1
|
Zhou N, Miao K, Hou L, Liu H, Chen J, Ji Y. Phylotranscriptomic analyses reveal the evolutionary complexity of Paris L. (Melanthiaceae), a morphologically distinctive genus with significant pharmaceutical importance. ANNALS OF BOTANY 2024; 134:1277-1290. [PMID: 39221840 PMCID: PMC11688527 DOI: 10.1093/aob/mcae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Previous phylogenetic studies on the pharmaceutically significant genus Paris (Melanthiaceae) have consistently revealed substantial cytonuclear discordance, yet the underlying mechanism responsible for this phenomenon remains elusive. This study aims to reconstruct a robust nuclear backbone phylogeny and elucidate the potential evolutionarily complex events contributing to previously observed cytonuclear discordance within Paris. METHODS Based on a comprehensive set of nuclear low-copy orthologous genes obtained from transcriptomic data, the intrageneric phylogeny of Paris, along with its phylogenetic relationships to allied genera, were inferred using coalescent and concatenated approaches. The analysis of gene tree discordance and reticulate evolution, in conjunction with an incomplete lineage sorting (ILS) simulation, was conducted to explore potential hybridization and ILS events in the evolutionary history of Paris and assess their contribution to the discordance of gene trees. KEY RESULTS The nuclear phylogeny unequivocally confirmed the monophyly of Paris and its sister relationship with Trillium, while widespread incongruences in gene trees were observed at the majority of internal nodes within Paris. The reticulate evolution analysis identified five instances of hybridization events in Paris, indicating that hybridization events might have occurred recurrently throughout the evolutionary history of Paris. In contrast, the ILS simulations revealed that only two internal nodes within section Euthyra experienced ILS events. CONCLUSIONS Our data suggest that the previously observed cytonuclear discordance in the phylogeny of Paris can primarily be attributed to recurrent hybridization events, with secondary contributions from infrequent ILS events. The recurrent hybridization events in the evolutionary history of Paris not only drove lineage diversification and speciation but also facilitated morphological innovation, and enhanced ecological adaptability. Therefore, artificial hybridization has great potential for breeding medicinal Paris species. These findings significantly contribute to our comprehensive understanding of the evolutionary complexity of this pharmaceutically significant plant lineage, thereby facilitating effective exploitation and conservation efforts.
Collapse
Affiliation(s)
- Nian Zhou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ke Miao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Luxiao Hou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunheng Ji
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
2
|
Jiang LJ, Zhao J, Wang JG, Landrein S, Shi JP, Huang CJ, Luo M, Zhou XM, Niu HB, He ZR. Deciphering the evolution and biogeography of ant-ferns Lecanopteris s.s. Mol Phylogenet Evol 2024; 201:108199. [PMID: 39278383 DOI: 10.1016/j.ympev.2024.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Southeast Asia is a biodiversity hotspot characterized by a complex paleogeography, and its Polypodiopsida flora is particularly diverse. While hybridization is recognized as common in ferns, further research is needed to investigate the relationship between hybridization events and fern diversity. Lecanopteris s.s., an ant-associated fern, has been subject to debate regarding species delimitations primarily due to limited DNA markers and species sampling. Our study integrates 22 newly generated plastomes, 22 transcriptomes, and flow cytometry of all native species along with two cultivated hybrids. Our objective is to elucidate the reticulate evolutionary history within Lecanopteris s.s. through the integration of phylobiogeographic reconstruction, gene flow inference, and genome size estimation. Key findings of our study include: (1) An enlarged plastome size (178-187 Kb) in Lecanopteris s.s., attributed to extreme expansion of the Inverted Repeat (IR) regions; (2) The traditional 'pumila' and 'crustacea' groups are paraphyletic; (3) Significant cytonuclear discordance attributed to gene flow; (4) Natural hybridization and introgression in the 'pumila' and 'darnaedii' groups; (5) L. luzonensis is the maternal parent of L. 'Yellow Tip', with L. pumila suggested as a possible paternal parent; (6) L. 'Tatsuta' is a hybrid between L. luzonensis and L. crustacea; (7) Lecanopteris s.s. first diverged during the Neogene and then during the middle Miocene climatic optimum in the Indochina and Sundaic regions. In conclusion, the biogeographic history and speciation of Lecanopteris have been profoundly shaped by past climate changes and geodynamics of Southeast Asia. Dispersals, hybridization and introgression between species act as pivotal factors in the evolutionary trajectory of Lecanopteris s.s.. This research provides a robust framework for further exploration and understanding of the complex dynamics driving the diversification and distribution patterns within Polypodiaceae subfamily Microsoroideae.
Collapse
Affiliation(s)
- Li-Ju Jiang
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Sven Landrein
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong Special Administrative Region of China
| | - Ji-Pu Shi
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Miao Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Hong-Bin Niu
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China.
| |
Collapse
|
3
|
Zhao J, Huang CJ, Jiang LJ, He ZR, Yang S, Zhu ZM, Zhang L, Yu H, Zhou XM, Wang JG. Phylogenomic analyses of the pantropical Platycerium Desv. (Platycerioideae) reveal their complex evolution and historical biogeography. Mol Phylogenet Evol 2024; 201:108213. [PMID: 39393764 DOI: 10.1016/j.ympev.2024.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Platycerium is a genus of pantropical epiphytic ferns consisting of ca. 18 species and are highly sought after by horticultural enthusiasts. Although the monophyly of this genus has been well supported in previous molecular studies, as an intercontinentally disjunct genus, the origin and distribution pattern of Platycerium were elusive and controversial. This is mainly due to limited taxon sampling, a plastid representing only a single coalescent history, the lack of fossil evidence, and so on. Here, by utilizing genome-skimming sequencing, transcriptome sequencing, and flow cytometry, we integrated chloroplast genomes, data of single-copy nuclear genes, ploidy levels, morphology, and geographic distribution to understand the species phylogeny and the evolutionary and biogeographic history of Platycerium. Our major results include: (1) based on both plastid and nuclear datasets, Platycerium is consistently resolved into three fully supported clades: the Afro-American (AA) clade, the Javan-Australian (JA) clade, and the Malayan-Asian (MA) clade. The AA clade and MA clade are further divided into three and two subclades, respectively; (2) a large amount of gene tree conflict, as well as cytonuclear discordance, was found and can be explained by hybridization and incomplete lineage sorting, and most of the hybridization hypotheses represented ancient hybridization events; (3) through molecular dating, the crown age of Platycerium is determined to be at approximately 32.79 Ma based on the plastid dataset or 29.08 Ma based on the nuclear dataset in the Middle Oligocene; (4) ancestral area reconstruction analysis from different datasets showed that Platycerium most likely originated from Indochina; (5) current distribution patterns are resultant from long-distance dispersals, ancient orogeny, and an ancient climate event; and (6) species diversification was driven by polyploidization, dispersal, and hybridization. This study presented here will help understand the evolution of tropical plant flora and provide a reference for the cultivation and breeding of staghorn ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Li-Ju Jiang
- Gardening and Horticulture Center, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Shuai Yang
- Plant Fairyland, Boda Road, Chenggong District, Kunming 650503, Yunnan, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| |
Collapse
|
4
|
Wang Y, Dong W, Liang Y, Lin W, Chen J, Henry R, Chen F. PhyloForge: Unifying Micro- and Macroevolution With Comprehensive Genomic Signals. Mol Ecol Resour 2024:e14050. [PMID: 39588658 DOI: 10.1111/1755-0998.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
The dimensions of phylogenetic research have expanded to encompass the study of large-scale populations at the microevolutionary level and comparisons between different species or taxonomic units at the macroevolutionary level. Traditional phylogenetic tools often struggle to handle the diverse and complex data required for these different evolutionary scales. In response to this challenge, we introduce PhyloForge, a robust tool designed to seamlessly integrate the demands of both micro- and macroevolution, comprehensively utilising diverse phylogenomic signals, such as genes, SNPs, and structural variations, as well as mitochondrial and chloroplast genomes. PhyloForge's innovation lies in its capability to seamlessly integrate multiple phylogenomic signals, enabling the unified analysis of multidimensional genomic data. This unique feature empowers researchers to gain a more comprehensive understanding of diverse aspects of biological evolution. PhyloForge not only provides highly customisable analysis tools for experienced researchers but also features an intuitively designed interface, facilitating effortless phylogenetic analysis for beginners. Extensive testing across various domains, including animals, plants and fungi, attests to its broad applicability in the field of phylogenetics. In summary, PhyloForge has significant potential in the era of large-scale genomics, offering a new perspective and toolset for a deeper understanding of the evolution of life. PhyloForge codes could be found in GitHub (https://github.com/wangyayaya/PhyloForge/), and the program could be installed in Conda (https://anaconda.org/wangxiaobei/phyloforge).
Collapse
Affiliation(s)
- Ya Wang
- National Key Laboratory for Tropical Crop Breeding, College of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Wei Dong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufan Liang
- National Key Laboratory for Tropical Crop Breeding, College of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Weiwei Lin
- National Key Laboratory for Tropical Crop Breeding, College of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Junhao Chen
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia
| | - Fei Chen
- National Key Laboratory for Tropical Crop Breeding, College of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
| |
Collapse
|
5
|
Wu P, Xue N, Yang J, Zhang Q, Sun Y, Zhang W. OGU: A Toolbox for Better Utilising Organelle Genomic Data. Mol Ecol Resour 2024:e14044. [PMID: 39523951 DOI: 10.1111/1755-0998.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Organelle genomes serve as crucial datasets for investigating the genetics and evolution of plants and animals, genome diversity, and species identification. To enhance the collection, analysis, and visualisation of such data, we have developed a novel open-source software tool named Organelle Genome Utilities (OGU). The software encompasses three modules designed to streamline the handling of organelle genome data. The data collection module is dedicated to retrieving, validating and organising sequence information. The evaluation module assesses sequence variance using a range of methods, including novel metrics termed stem and terminal phylogenetic diversity. The primer module designs universal primers for downstream applications. Finally, a visualisation pipeline has been developed to present comprehensive insights into organelle genomes across different lineages rather than focusing solely on individual species. The performance, compatibility and stability of OGU have been rigorously evaluated through benchmarking with four datasets, including one million mixed GenBank records, plastid genomic data from the Lamiaceae family, mitochondrial data from rodents, and 308 plastid genomes sourced from various angiosperm families. Based on software capabilities, we identified 30 plastid intergenic spacers. These spacers exhibit a moderate evolutionary rate and offer practical utility comparable to coding regions, highlighting the potential applications of intergenic spacers in organelle genomes. We anticipate that OGU will substantially enhance the efficient utilisation of organelle genomic data and broaden the prospects for related research endeavours.
Collapse
Affiliation(s)
- Ping Wu
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ningning Xue
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jie Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
| | - Qiang Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yuzhe Sun
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wen Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
6
|
Lyu ZY, Yang GM, Zhou XL, Wang SQ, Zhang R, Shen SK. Deciphering the complex organelle genomes of two Rhododendron species and insights into adaptive evolution patterns in high-altitude. BMC PLANT BIOLOGY 2024; 24:1054. [PMID: 39511517 PMCID: PMC11545642 DOI: 10.1186/s12870-024-05761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND The genomes within organelles are crucial for physiological functions such as respiration and photosynthesis and may also contribute to environmental adaptation. However, the limited availability of genetic resources, particularly mitochondrial genomes, poses significant challenges for in-depth investigations. RESULTS Here, we explored various assembly methodologies and successfully reconstructed the complex organelle genomes of two Rhododendron species: Rhododendron nivale subsp. boreale and Rhododendron vialii. The mitogenomes of these species exhibit various conformations, as evidenced by long-reads mapping. Notably, only the mitogenome of R. vialii can be depicted as a singular circular molecule. The plastomes of both species conform to the typical quadripartite structure but exhibit elongated inverted repeat (IR) regions. Compared to the high similarity between plastomes, the mitogenomes display more obvious differences in structure, repeat sequences, and codon usage. Based on the analysis of 58 organelle genomes from angiosperms inhabiting various altitudes, we inferred the genetic adaptations associated with high-altitude environments. Phylogenetic analysis revealed partial inconsistencies between plastome- and mitogenome-derived phylogenies. Additionally, evolutionary lineage was determined to exert a greater influence on codon usage than altitude. Importantly, genes such as atp4, atp9, mttB, and clpP exhibited signs of positive selection in several high-altitude species, suggesting a potential link to alpine adaptation. CONCLUSIONS We tested the effectiveness of different organelle assembly methods for dealing with complex genomes, while also providing and validating high-quality organelle genomes of two Rhododendron species. Additionally, we hypothesized potential strategies for high-altitude adaptation of organelles. These findings offer a reference for the assembly of complex organelle genomes, while also providing new insights and valuable resources for understanding their adaptive evolution patterns.
Collapse
Affiliation(s)
- Zhen-Yu Lyu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Gao-Ming Yang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Xiong-Li Zhou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Si-Qi Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Rui Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Shi-Kang Shen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China.
| |
Collapse
|
7
|
Xie DF, Li J, Sun JH, Cheng RY, Wang Y, Song BN, He XJ, Zhou SD. Peering through the hedge: Multiple datasets yield insights into the phylogenetic relationships and incongruences in the tribe Lilieae (Liliaceae). Mol Phylogenet Evol 2024; 200:108182. [PMID: 39222738 DOI: 10.1016/j.ympev.2024.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The increasing use of genome-scale data has significantly facilitated phylogenetic analyses, contributing to the dissection of the underlying evolutionary mechanisms that shape phylogenetic incongruences, such as incomplete lineage sorting (ILS) and hybridization. Lilieae, a prominent member of the Liliaceae family, comprises four genera and approximately 260 species, representing 43% of all species within Liliaceae. They possess high ornamental, medicinal and edible values. Yet, no study has explored the validity of various genome-scale data in phylogenetic analyses within this tribe, nor have potential evolutionary mechanisms underlying its phylogenetic incongruences been investigated. Here, transcriptome, Angiosperms353, plastid and mitochondrial data, were collected from 50 to 93 samples of Lilieae, covering all four recognized genera. Multiple datasets were created and used for phylogenetic analyses based on concatenated and coalescent-based methods. Evolutionary rates of different datasets were calculated, and divergence times were estimated. Various approaches, including coalescence simulation, Quartet Sampling (QS), calculation of concordance factors (gCF and sCF), as well as MSCquartets and reticulate network inference, were carried out to infer the phylogenetic discordances and analyze their underlying mechanisms using a reduced 33-taxon dataset. Despite extensive phylogenetic discordances among gene trees, robust phylogenies were inferred from nuclear and plastid data compared to mitochondrial data, with lower synonymous substitution detected in mitochondrial genes than in nuclear and plastid genes. Significant ILS was detected across the phylogeny of Lilieae, with clear evidence of reticulate evolution identified. Divergence time estimation indicated that most of lineages in Lilieae diverged during a narrow time frame (ranging from 5.0 Ma to 10.0 Ma), consistent with the notion of rapid radiation evolution. Our results suggest that integrating transcriptomic and plastid data can serve as cost-effective and efficient tools for phylogenetic inference and evolutionary analysis within Lilieae, and Angiosperms353 data is also a favorable choice. Mitochondrial data are more suitable for phylogenetic analyses at higher taxonomic levels due to their stronger conservation and lower synonymous substitution rates. Significant phylogenetic incongruences detected in Lilieae were caused by both incomplete lineage sorting (ILS) and reticulate evolution, with hybridization and "ghost introgression" likely prevalent in the evolution of Lilieae species. Our findings provide new insights into the phylogeny of Lilieae, enhancing our understanding of the evolution of species in this tribe.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| | - Juan Li
- Southwest Minzu University, Institute Of Qinghai-Tibetan Plateau, 610225 Chengdu, Sichuan, PR China
| | - Jia-Hui Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Yuan Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Bo-Ni Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, Sichuan, PR China.
| |
Collapse
|
8
|
Wang H, Wu Z, Li T, Zhao J. Phylogenomics resolves the backbone of Poales and identifies signals of hybridization and polyploidy. Mol Phylogenet Evol 2024; 200:108184. [PMID: 39209045 DOI: 10.1016/j.ympev.2024.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Poales, as one of the largest orders of angiosperm, holds crucial economic and ecological importance. Nevertheless, achieving a consensus topology has been challenging in previous studies due to limited molecular data and sparse taxon sampling. The uneven distribution of species diversity among families and the factors leading to elevated species richness in certain lineages have also been subjects of ongoing discussion and investigation. In this study, we conducted a comprehensive sampling, including representatives from all 14 families and 85 taxa of Poales, along with five additional outgroups. To reconstruct the phylogeny of Poales, we employed a combination of coalescent and concatenation methods on three nuclear gene sets (1093, 491, 143) and one plastid gene set (53), which were inferenced from genomic data. We also conducted phylogenetic hypothesis analyses to evaluate two major conflicting nodes detected in phylogenetic analyses. As a result, we successfully resolved the backbone of Poales and provided a timeline for its evolutionary history. We recovered the sister relationship between Typhaceae and Bromeliaceae as the earliest diverging families within Poales. The clade consisting of Ecdeiocoleaceae and Joinvilleaceae was recovered as the sister group of Poaceae. Within the xyrid clade, Mayacaceae and Erioaculaceae + Xyridaceae successively diverged along the backbone of Poales. The topology of [Aristidoideae, ((Micrairoideae, Panicoideae), (Arundinoideae, (Chloridoideae, Danthonioideae)))] within the PACMAD clade has received strong support from multiple findings. We also delved into the underlying biological factors that contributed to the conflicting nodes observed in the phylogenetic analysis. Apart from the uncertainty regarding the sister group of Poaceae caused by cytonuclear discordance, frequent hybridization and polyploidy may have contributed to other conflicting nodes. We identified 26 putative whole-genome duplication (WGD) events within Poales. However, apart from the σ-WGD and the ρ-WGD, we did not observe any potential polyploid events that could be directly linked to the species diversification in specific lineages. Furthermore, there was a significant increase in the net diversification rate of Poales following the K-Pg boundary.
Collapse
Affiliation(s)
- Huijun Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhigang Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Tao Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jindong Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Song Y, Yu QF, Zhang D, Chen LG, Tan YH, Zhu W, Su HL, Yao X, Liu C, Corlett RT. New insights into the phylogenetic relationships within the Lauraceae from mitogenomes. BMC Biol 2024; 22:241. [PMID: 39444010 PMCID: PMC11515631 DOI: 10.1186/s12915-024-02040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The family Lauraceae is subdivided into six main lineages: Caryodaphnopsideae, Cassytheae, Cryptocaryeae, Hypodaphnideae, Laureae, and Neocinnamomeae. However, phylogenetic relationships among these lineages have been debatable due to incongruence between trees constructed using nuclear ribosomal DNA (nrDNA) sequences and chloroplast (cp) genomes. As with cp DNA, the mitochondrial (mt) DNA of most flowering plants is maternally inherited, so the phylogenetic relationships recovered with mt genomes are expected to be consistent with that from cp genomes, rather than nrDNA sequences. RESULTS The mitogenome of Machilus yunnanensis, with a length of 735,392 bp, has a very different genome size and gene linear order from previously published magnoliid mitogenomes. Phylogenomic reconstructions based on 41 mt genes from 92 Lauraceae mitogenomes resulted in highly supported relationships: sisterhood of the Laureae and a group containing Neocinnamomeae and Caryodaphnopsideae, with Cassytheae being the next sister group, followed by Cryptocaryeae. However, we found significant incongruence among the mitochondrial, chloroplast, and nuclear phylogenies, especially for the species within the Caryodaphnopsideae and Neocinnamomeae lineages. Time-calibrated phylogenetic analyses showed that the split between Caryodaphnopsideae and Neocinnamomeae dated to the later Eocene, around 38.5 Ma, Laureae originated in the Late Cretaceous, around 84.9 Ma, Cassytheae originated in the mid-Cretaceous around 102 Ma, and Cryptocaryeae originated in the Early Cretaceous around 116 Ma. From the Late Cretaceous to the Paleocene, net diversification rates significantly increased across extant clades of major lineages, and both speciation rates and net diversification rates continued steady growth towards the present. CONCLUSIONS The topology obtained here for the first time shows that mt genes can be used to support relationships among lineages of Lauraceae. Our results highlight that both Caryodaphnopsideae and Neocinnamomeae lineages are younger than previously thought, likely first diversifying in the Eocene, and species in the other extant lineages of Lauraceae dates in a long-time span from the Early Cretaceous to the Eocene, and the climate of a period of about 90 million years was relatively warm, while the extant species of Lauraceae then continuously diversified with global cooling from the Eocene to the present day.
Collapse
Affiliation(s)
- Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - Qun-Fei Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Di Zhang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Li-Gang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Yun-Hong Tan
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Menglun, Mengla, Yunnan, 666303, China
| | - Wen Zhu
- Southwest Research Center for Landscape Architecture Engineering, National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Hua-Long Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - Xin Yao
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
| | - Chao Liu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China.
| | - Richard T Corlett
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
| |
Collapse
|
10
|
He X, Chen J, Li Z. Complete organelle genomes of the threatened aquatic species Scheuchzeria palustris (Scheuchzeriaceae): Insights into adaptation and phylogenomic placement. Ecol Evol 2024; 14:e70248. [PMID: 39219575 PMCID: PMC11364858 DOI: 10.1002/ece3.70248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Scheuchzeria palustris, the only species in the Scheuchzeriaceae family, plays a crucial role in methane production and transportation, influencing the global carbon cycle and maintaining ecosystem stability. However, it is now threatened by human activities and global warming. In this study, we generated new organelle genomes for S. palustris, with the plastome (pt) measuring 158,573 bp and the mitogenome (mt) measuring 420,724 bp. We predicted 296 RNA editing sites in mt protein-coding genes (PCGs) and 142 in pt-PCGs. Notably, abundant RNA editing sites in pt-PCGs likely originated from horizontal gene transfer between the plastome and mitogenome. Additionally, we identified positive selection signals in four mt-PCGs (atp4, ccmB, nad3, and sdh4) and one pt-PCG (rps7), which may contribute to the adaptation of S. palustris to low-temperature and high-altitude environments. Furthermore, we identified 35 mitochondrial plastid DNA (MTPT) segments totaling 58,479 bp, attributed to dispersed repeats near most MTPT. Phylogenetic trees reconstructed from mt- and pt-PCGs showed topologies consistent with the APG IV system. However, the conflicting position of S. palustris can be explained by significant differences in the substitution rates of its mt- and pt-PCGs (p < .001). In conclusion, our study provides vital genomic resources to support future conservation efforts and explores the adaptation mechanisms of S. palustris.
Collapse
Affiliation(s)
- Xiang‐Yan He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in WanjiangBasin Co‐Funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
- Aquatic Plant Research Center, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jin‐Ming Chen
- Aquatic Plant Research Center, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
| | - Zhi‐Zhong Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in WanjiangBasin Co‐Funded by Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| |
Collapse
|
11
|
Sepúlveda-Espinoza F, Cofré-Serrano A, Veloso-Valeria T, Quesada-Calderon S, Guillemin ML. Characterization of the organellar genomes of Mazzaella laminarioides and Mazzaella membranacea (Gigartinaceae, Rhodophyta). JOURNAL OF PHYCOLOGY 2024; 60:797-805. [PMID: 38944824 DOI: 10.1111/jpy.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Mazzaella, a genus with no genomic resources available, has extensive distribution in the cold waters of the Pacific, where they represent ecologically and economically important species. In this study, we aimed to sequence, assemble, and annotate the complete mitochondrial and chloroplast genomes from two Mazzaella spp. and characterize the intraspecific variation among them. We report for the first time seven whole organellar genomes (mitochondria: OR915856, OR947465, OR947466, OR947467, OR947468, OR947469, OR947470; chloroplast: OR881974, OR909680, OR909681, OR909682, OR909683, OR909684, OR909685) obtained through high-throughput sequencing for six M. laminarioides sampled from three Chilean regions and one M. membranacea. Sequenced Mazzaella mitogenomes have identical gene number, gene order, and genome structure. The same results were observed for assembled plastomes. A total of 52 genes were identified in mitogenomes, and a total of 235 genes were identified in plastomes. Although the M. membranacea plastome included a full-length pbsA gene, in all M. laminarioides samples, the pbsA gene was split in three open reading frames (ORFs). Within M. laminarioides, we observed important plastome lineage-specific variations, such as the pseudogenization of the two hypothetical protein-coding genes, ycf23 and ycf45. Nonsense mutations in the ycf23 and ycf45 genes were only detected in the northern lineage. These results are consistent with phylogenetic reconstructions and divergence time estimation using concatenated coding sequences that not only support the monophyly of M. laminarioides but also underscore that the three M. laminarioides lineages are in an advanced stage of divergence. These new results open the question of the existence of still undisclosed species in M. laminarioides.
Collapse
Affiliation(s)
- Francisco Sepúlveda-Espinoza
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio de Epigenética Vegetal, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Angela Cofré-Serrano
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Tomás Veloso-Valeria
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Suany Quesada-Calderon
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- AUSTRAL-Omics, Vicerrectoría de Investigación, desarrollo y creación artística (VIDCA), Universidad Austral de Chile, Valdivia, Chile
| | - Marie-Laure Guillemin
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
12
|
Liu J, Zhou SZ, Liu YL, Zhao BY, Yu D, Zhong MC, Jiang XD, Cui WH, Zhao JX, Qiu J, Liu LM, Guo ZH, Li HT, Tan DY, Hu JY, Li DZ. Genomes of Meniocus linifolius and Tetracme quadricornis reveal the ancestral karyotype and genomic features of core Brassicaceae. PLANT COMMUNICATIONS 2024; 5:100878. [PMID: 38475995 PMCID: PMC11287156 DOI: 10.1016/j.xplc.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Brassicaceae represents an important plant family from both a scientific and economic perspective. However, genomic features related to the early diversification of this family have not been fully characterized, especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian interior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quadricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the basal Aethionemeae. We reconstructed an ancestral core Brassicaceae karyotype (CBK) containing 9 pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes in Brassicaceae. We detected pervasive conflicting phylogenomic signals accompanied by widespread ancient hybridization events, which correlate well with the early divergence of core Brassicaceae. We identified a successive Brassicaceae-specific expansion of the class I TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) gene family, which encodes enzymes with essential regulatory roles in flowering time and embryo development. The TPS1s were mainly randomly amplified, followed by expression divergence. Our results provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a potential model for broad-scale studies of adaptive radiation under an ever-changing environment.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Zhao Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bin-Yan Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Hua Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Qiu
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Liang-Min Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Dun-Yan Tan
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
13
|
Kan J, Zhang S, Wu Z, Bi D. Exploring Plastomic Resources in Sempervivum (Crassulaceae): Implications for Phylogenetics. Genes (Basel) 2024; 15:441. [PMID: 38674377 PMCID: PMC11049882 DOI: 10.3390/genes15040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The plastid organelle is vital for photosynthesis and energy production. Advances in sequencing technology have enabled the exploration of plastomic resources, offering insights into plant evolution, diversity, and conservation. As an important group of horticultural ornamentals in the Crassulaceae family, Sempervivum plants are known for their unique rosette-like structures and reproduction through offsets. Despite their popularity, the classification status of Sempervivum remains uncertain, with only a single plastome sequence currently available. Furthermore, codon usage bias (CUB) is a widespread phenomenon of the unbalanced usage of synonymous codons in the coding sequence (CDS). However, due to the limited available plastid data, there has been no research that focused on the CUB analysis among Sempervivum until now. To address these gaps, we sequenced and released the plastomes of seven species and one subspecies from Sempervivum, revealing several consistent patterns. These included a shared 110 bp extension of the rps19 gene, 14 hypervariable regions (HVRs) with distinct nucleotide diversity (π: 0.01173 to 0.02702), and evidence of selective pressures shaping codon usage. Notably, phylogenetic analysis robustly divided the monophyletic clade into two sections: Jovibarba and Sempervivum. In conclusion, this comprehensive plastomic resource provides valuable insights into Sempervivum evolution and offers potential molecular markers for DNA barcoding.
Collapse
Affiliation(s)
- Junhu Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (J.K.); (S.Z.)
| | - Shuo Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (J.K.); (S.Z.)
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (J.K.); (S.Z.)
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| |
Collapse
|
14
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
15
|
Xue TT, Janssens SB, Liu BB, Yu SX. Phylogenomic conflict analyses of the plastid and mitochondrial genomes via deep genome skimming highlight their independent evolutionary histories: A case study in the cinquefoil genus Potentilla sensu lato (Potentilleae, Rosaceae). Mol Phylogenet Evol 2024; 190:107956. [PMID: 37898296 DOI: 10.1016/j.ympev.2023.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Phylogenomic conflicts are widespread among genomic data, with most previous studies primarily focusing on nuclear datasets instead of organellar genomes. In this study, we investigate phylogenetic conflict analyses within and between plastid and mitochondrial genomes using Potentilla as a case study. We generated three plastid datasets (coding, noncoding, and all-region) and one mitochondrial dataset (coding regions) to infer phylogenies based on concatenated and multispecies coalescent (MSC) methods. Conflict analyses were then performed using PhyParts and Quartet Sampling (QS). Both plastid and mitochondrial genomes divided the Potentilla into eight highly supported clades, two of which were newly identified in this study. While most organellar loci were uninformative for the majority of nodes (bootstrap value < 70%), PhyParts and QS detected conflicting signals within the two organellar genomes. Regression analyses revealed that conflict signals mainly occurred among shorter loci, whereas longer loci tended to be more concordant with the species tree. In addition, two significant disagreements between the two organellar genomes were detected, likely attributed to hybridization and/or incomplete lineage sorting. Our results demonstrate that mitochondrial genes can fully resolve the phylogenetic relationships among eight major clades of Potentilla and are not always linked with plastome in evolutionary history. Stochastic inferences appear to be the primary source of observed conflicts among the gene trees. We recommend that the loci with short sequence length or containing limited informative sites should be used cautiously in MSC analysis, and suggest the joint application of concatenated and MSC methods for phylogenetic inference using organellar genomes.
Collapse
Affiliation(s)
- Tian-Tian Xue
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium; Department of Biology, KU Leuven, Kasteelpark Arenberg 31, BE-3001 Leuven, Belgium.
| | - Bin-Bin Liu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sheng-Xiang Yu
- State Key Laboratory of Plant Diversity and Specialty Crops / State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Ji J, Luo Y, Pei L, Li M, Xiao J, Li W, Wu H, Luo Y, He J, Cheng J, Xie L. Complete Plastid Genomes of Nine Species of Ranunculeae (Ranunculaceae) and Their Phylogenetic Inferences. Genes (Basel) 2023; 14:2140. [PMID: 38136961 PMCID: PMC10742492 DOI: 10.3390/genes14122140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The tribe Ranunculeae, Ranunculaceae, comprising 19 genera widely distributed all over the world. Although a large number of Sanger sequencing-based molecular phylogenetic studies have been published, very few studies have been performed on using genomic data to infer phylogenetic relationships within Ranunculeae. In this study, the complete plastid genomes of nine species (eleven samples) from Ceratocephala, Halerpestes, and Ranunculus were de novo assembled using a next-generation sequencing method. Previously published plastomes of Oxygraphis and other related genera of the family were downloaded from GenBank for comparative analysis. The complete plastome of each Ranunculeae species has 112 genes in total, including 78 protein-coding genes, 30 transfer RNA genes, and four ribosomal RNA genes. The plastome structure of Ranunculeae samples is conserved in gene order and arrangement. There are no inverted repeat (IR) region expansions and only one IR contraction was found in the tested samples. This study also compared plastome sequences across all the samples in gene collinearity, codon usage, RNA editing sites, nucleotide variability, simple sequence repeats, and positive selection sites. Phylogeny of the available Ranunculeae species was inferred by the plastome data using maximum-likelihood and Bayesian inference methods, and data partitioning strategies were tested. The phylogenetic relationships were better resolved compared to previous studies based on Sanger sequencing methods, showing the potential value of the plastome data in inferring the phylogeny of the tribe.
Collapse
Affiliation(s)
- Jiaxin Ji
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Yike Luo
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Linying Pei
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China;
| | - Mingyang Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (M.L.); (J.C.)
| | - Jiamin Xiao
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Wenhe Li
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Huanyu Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Yuexin Luo
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Jian He
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| | - Jin Cheng
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (M.L.); (J.C.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lei Xie
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (J.J.); (Y.L.); (J.X.); (W.L.); (H.W.); (Y.L.); (J.H.)
| |
Collapse
|