1
|
Zhang S, Deng R, Liu J, Luo D, Hu M, Huang S, Jiang M, Du J, Jin T, Liu D, Li Y, Khan M, Wang S, Wang X. Phosphorylation of the transcription factor SlBIML1 by SlBIN2 kinases delays flowering in tomato. PLANT PHYSIOLOGY 2024; 196:2583-2598. [PMID: 39288195 DOI: 10.1093/plphys/kiae489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
Brassinosteroids (BRs) are well known for their important role in the regulation of plant growth and development. Plants with deficiency in BR signaling show delayed plant development and exhibit late flowering phenotypes. However, the precise mechanisms involved in this process require investigation. In this study, we cloned homologs of BRASSINOSTEROID-INSENSITIVE 2 (SlBIN2), the GSK3-like protein kinase in tomato (Solanum lycopersicum). We characterized growth-related processes and phenotypic changes in the transgenic lines and found that SlBIN2 transgenic lines have delayed development and slow growing phenotypes. SlBIN2s work redundantly to negatively regulate BR signaling in tomato. Furthermore, the transcription factor SlBIN2.1-INTERACTING MYB-LIKE 1 (SlBIML1) was identified as a downstream substrate of SlBIN2s that SlBIN2s interact with and phosphorylate to synergistically regulate tomato developmental processes. Specifically, SlBIN2s modulated protein stability of SlBIML1 by phosphorylating multiple amino acid residues, including the sites Thr266 and Thr280. This study reveals a branch of the BR signaling pathway that regulates the vegetative growth phase and delays floral transition in tomato without the feedback affecting BR signaling. This information enriches our understanding of the downstream transduction pathway of BR signaling and provides potential targets for adjusting tomato flowering time.
Collapse
Affiliation(s)
- Siwei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianwei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200000, China
| | - Dan Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Miaomiao Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuhua Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Science and Technology of Shaanxi Province, Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Meng Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dehai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuchao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maqsood Khan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shufen Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaofeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Qiao Z, Li J, Zhang X, Guo H, He C, Zong D. Genome-Wide Identification, Expression Analysis, and Subcellular Localization of DET2 Gene Family in Populus yunnanensis. Genes (Basel) 2024; 15:148. [PMID: 38397138 PMCID: PMC10888042 DOI: 10.3390/genes15020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Brassinosteroids (BRs) are important hormones involved in almost all stages of plant growth and development, and sterol dehydrogenase is a key enzyme involved in BRs biosynthesis. However, the sterol dehydrogenase gene family of Populus yunnanensis Dode (P. yunnanensis) has not been studied. (2) Methods: The PyDET2 (DEETIOLATED2) gene family was identified and analyzed. Three genes were screened based on RNA-seq of the stem tips, and the PyDET2e was further investigated via qRT-PCR (quantitative real-time polymerase chain reaction) and subcellular localization. (3) Results: The 14 DET2 family genes in P. yunnanensis were categorized into four groups, and 10 conserved protein motifs were identified. The gene structure, chromosome distribution, collinearity, and codon preference of all PyDET2 genes in the P. yunnanensis genome were analyzed. The codon preference of this family is towards the A/U ending, which is strongly influenced by natural selection. The PyDET2e gene was expressed at a higher level in September than in July, and it was significantly expressed in stems, stem tips, and leaves. The PyDET2e protein was localized in chloroplasts. (4) Conclusions: The PyDET2e plays an important role in the rapid growth period of P. yunnanensis. This systematic analysis provides a basis for the genome-wide identification of genes related to the brassinolide biosynthesis process in P. yunnanensis, and lays a foundation for the study of the rapid growth mechanism of P. yunnanensis.
Collapse
Affiliation(s)
- Zhensheng Qiao
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China; (Z.Q.); (J.L.); (H.G.); (C.H.)
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in University of YunnanProvince, Southwest Forestry University, Kunming 650224, China;
| | - Jiaqi Li
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China; (Z.Q.); (J.L.); (H.G.); (C.H.)
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in University of YunnanProvince, Southwest Forestry University, Kunming 650224, China;
| | - Xiaolin Zhang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in University of YunnanProvince, Southwest Forestry University, Kunming 650224, China;
- College of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Haiyang Guo
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China; (Z.Q.); (J.L.); (H.G.); (C.H.)
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in University of YunnanProvince, Southwest Forestry University, Kunming 650224, China;
| | - Chengzhong He
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China; (Z.Q.); (J.L.); (H.G.); (C.H.)
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in University of YunnanProvince, Southwest Forestry University, Kunming 650224, China;
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| | - Dan Zong
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China; (Z.Q.); (J.L.); (H.G.); (C.H.)
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in University of YunnanProvince, Southwest Forestry University, Kunming 650224, China;
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|