1
|
Sachse M, de Castro IF, Tenorio R, Risco C. Molecular mapping of virus-infected cells with immunogold and metal-tagging transmission electron microscopy. Mol Microbiol 2024; 121:688-695. [PMID: 37864540 DOI: 10.1111/mmi.15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Transmission electron microscopy (TEM) has been essential to study virus-cell interactions. The architecture of viral replication factories, the principles of virus assembly and the components of virus egress pathways are known thanks to the contribution of TEM methods. Specially, when studying viruses in cells, methodologies for labeling proteins and other macromolecules are important tools to correlate morphology with function. In this review, we present the most widely used labeling method for TEM, immunogold, together with a lesser known technique, metal-tagging transmission electron microscopy (METTEM) and how they can contribute to study viral infections. Immunogold uses the power of antibodies and electron dense, colloidal gold particles while METTEM uses metallothionein (MT), a metal-binding protein as a clonable tag. MT molecules build gold nano-clusters inside cells when these are incubated with gold salts. We describe the necessary controls to confirm that signals are specific, the advantages and limitations of both methods, and show some examples of immunogold and METTEM of cells infected with viruses.
Collapse
Affiliation(s)
- Martin Sachse
- Centro Nacional de Microbiología/ISCIII, Madrid, Spain
| | | | - Raquel Tenorio
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| |
Collapse
|
2
|
Sigmund F, Berezin O, Beliakova S, Magerl B, Drawitsch M, Piovesan A, Gonçalves F, Bodea SV, Winkler S, Bousraou Z, Grosshauser M, Samara E, Pujol-Martí J, Schädler S, So C, Irsen S, Walch A, Kofler F, Piraud M, Kornfeld J, Briggman K, Westmeyer GG. Genetically encoded barcodes for correlative volume electron microscopy. Nat Biotechnol 2023; 41:1734-1745. [PMID: 37069313 PMCID: PMC10713455 DOI: 10.1038/s41587-023-01713-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 02/14/2023] [Indexed: 04/19/2023]
Abstract
While genetically encoded reporters are common for fluorescence microscopy, equivalent multiplexable gene reporters for electron microscopy (EM) are still scarce. Here, by installing a variable number of fixation-stable metal-interacting moieties in the lumen of encapsulin nanocompartments of different sizes, we developed a suite of spherically symmetric and concentric barcodes (EMcapsulins) that are readable by standard EM techniques. Six classes of EMcapsulins could be automatically segmented and differentiated. The coding capacity was further increased by arranging several EMcapsulins into distinct patterns via a set of rigid spacers of variable length. Fluorescent EMcapsulins were expressed to monitor subcellular structures in light and EM. Neuronal expression in Drosophila and mouse brains enabled the automatic identification of genetically defined cells in EM. EMcapsulins are compatible with transmission EM, scanning EM and focused ion beam scanning EM. The expandable palette of genetically controlled EM-readable barcodes can augment anatomical EM images with multiplexed gene expression maps.
Collapse
Affiliation(s)
- Felix Sigmund
- Munich Institute of Biomedical Engineering, Department of Bioscience, TUM School of Natural Sciences and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany
| | - Oleksandr Berezin
- Munich Institute of Biomedical Engineering, Department of Bioscience, TUM School of Natural Sciences and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany
| | - Sofia Beliakova
- Munich Institute of Biomedical Engineering, Department of Bioscience, TUM School of Natural Sciences and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany
| | - Bernhard Magerl
- Munich Institute of Biomedical Engineering, Department of Bioscience, TUM School of Natural Sciences and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany
| | - Martin Drawitsch
- Research Group, Circuits of Birdsong, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Alberto Piovesan
- Munich Institute of Biomedical Engineering, Department of Bioscience, TUM School of Natural Sciences and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany
| | - Filipa Gonçalves
- Munich Institute of Biomedical Engineering, Department of Bioscience, TUM School of Natural Sciences and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany
| | - Silviu-Vasile Bodea
- Munich Institute of Biomedical Engineering, Department of Bioscience, TUM School of Natural Sciences and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany
| | - Stefanie Winkler
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany
| | - Zoe Bousraou
- Munich Institute of Biomedical Engineering, Department of Bioscience, TUM School of Natural Sciences and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany
| | - Martin Grosshauser
- Munich Institute of Biomedical Engineering, Department of Bioscience, TUM School of Natural Sciences and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany
| | - Eleni Samara
- Department Circuits-Computation-Models, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Jesús Pujol-Martí
- Department Circuits-Computation-Models, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | | | - Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Stephan Irsen
- Max Planck Institute for Neurobiology of Behavior-caesar (MPINB), Bonn, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Marie Piraud
- Helmholtz AI, Helmholtz Munich, Neuherberg, Germany
| | - Joergen Kornfeld
- Research Group, Circuits of Birdsong, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Kevin Briggman
- Max Planck Institute for Neurobiology of Behavior-caesar (MPINB), Bonn, Germany
| | - Gil Gregor Westmeyer
- Munich Institute of Biomedical Engineering, Department of Bioscience, TUM School of Natural Sciences and TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Institute for Synthetic Biomedicine, Helmholtz Munich, Neuherberg, Germany.
| |
Collapse
|
3
|
Tanner H, Sherwin O, Verkade P. Labelling strategies for correlative light electron microscopy. Microsc Res Tech 2023. [PMID: 36846978 DOI: 10.1002/jemt.24304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 03/01/2023]
Abstract
Imaging is one of the key technologies underpinning discoveries in biomedical research. Each imaging technique however usually only provides a specific type of information. For instance, live-cell imaging using fluorescent tags can show us the dynamics of a system. On the other hand, electron microscopy (EM) gives us better resolution combined with the structural reference space. By applying a combination of light and electron microscopy modalities to a single sample one can exploit the advantages of both techniques in correlative light electron microscopy (CLEM). Although CLEM approaches can generate additional insights into the sample that cannot be gained by either technique in isolation, the visualization of the object of interest via markers or probes is still one of the bottlenecks in a Correlative Microscopy workflow. Whereas fluorescence is not directly visible in a standard electron microscope, gold particles, as the most common choice of probe for EM can also only be visualized using specialized light microscopes. In this review we will discuss some of the latest developments of probes for CLEM and some strategies how to choose a probe, discussing pros and cons of specific probes, and ensuring that they function as a dual modality marker.
Collapse
Affiliation(s)
- Hugh Tanner
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK.,Department of Chemistry, KBC Building, Umeå University, Umeå, Sweden
| | - Olivia Sherwin
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Paul Verkade
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| |
Collapse
|
4
|
Peddie CJ, Genoud C, Kreshuk A, Meechan K, Micheva KD, Narayan K, Pape C, Parton RG, Schieber NL, Schwab Y, Titze B, Verkade P, Aubrey A, Collinson LM. Volume electron microscopy. NATURE REVIEWS. METHODS PRIMERS 2022; 2:51. [PMID: 37409324 PMCID: PMC7614724 DOI: 10.1038/s43586-022-00131-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 07/07/2023]
Abstract
Life exists in three dimensions, but until the turn of the century most electron microscopy methods provided only 2D image data. Recently, electron microscopy techniques capable of delving deep into the structure of cells and tissues have emerged, collectively called volume electron microscopy (vEM). Developments in vEM have been dubbed a quiet revolution as the field evolved from established transmission and scanning electron microscopy techniques, so early publications largely focused on the bioscience applications rather than the underlying technological breakthroughs. However, with an explosion in the uptake of vEM across the biosciences and fast-paced advances in volume, resolution, throughput and ease of use, it is timely to introduce the field to new audiences. In this Primer, we introduce the different vEM imaging modalities, the specialized sample processing and image analysis pipelines that accompany each modality and the types of information revealed in the data. We showcase key applications in the biosciences where vEM has helped make breakthrough discoveries and consider limitations and future directions. We aim to show new users how vEM can support discovery science in their own research fields and inspire broader uptake of the technology, finally allowing its full adoption into mainstream biological imaging.
Collapse
Affiliation(s)
- Christopher J. Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Christel Genoud
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kimberly Meechan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Present address: Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kristina D. Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Constantin Pape
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert G. Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicole L. Schieber
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Yannick Schwab
- Cell Biology and Biophysics Unit/ Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Aubrey Aubrey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| |
Collapse
|
5
|
Mehner-Breitfeld D, Ringel MT, Tichy DA, Endter LJ, Stroh KS, Lünsdorf H, Risselada HJ, Brüser T. TatA and TatB generate a hydrophobic mismatch important for the function and assembly of the Tat translocon in Escherichia coli. J Biol Chem 2022; 298:102236. [PMID: 35809643 PMCID: PMC9424591 DOI: 10.1016/j.jbc.2022.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
The twin-arginine translocation (Tat) system serves to translocate folded proteins across energy-transducing membranes in bacteria, archaea, plastids, and some mitochondria. In Escherichia coli, TatA, TatB, and TatC constitute functional translocons. TatA and TatB both possess an N-terminal transmembrane helix (TMH) followed by an amphipathic helix. The TMHs of TatA and TatB generate a hydrophobic mismatch with the membrane, as the helices comprise only 12 consecutive hydrophobic residues; however, the purpose of this mismatch is unclear. Here, we shortened or extended this stretch of hydrophobic residues in either TatA, TatB, or both and analyzed effects on translocon function and assembly. We found the WT length helices functioned best, but some variation was clearly tolerated. Defects in function were exacerbated by simultaneous mutations in TatA and TatB, indicating partial compensation of mutations in each by the other. Furthermore, length variation in TatB destabilized TatBC-containing complexes, revealing that the 12-residue-length is important but not essential for this interaction and translocon assembly. To also address potential effects of helix length on TatA interactions, we characterized these interactions by molecular dynamics simulations, after having characterized the TatA assemblies by metal-tagging transmission electron microscopy. In these simulations, we found that interacting short TMHs of larger TatA assemblies were thinning the membrane and—together with laterally-aligned tilted amphipathic helices—generated a deep V-shaped membrane groove. We propose the 12 consecutive hydrophobic residues may thus serve to destabilize the membrane during Tat transport, and their conservation could represent a delicate compromise between functionality and minimization of proton leakage.
Collapse
Affiliation(s)
| | - Michael T Ringel
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Daniel Alexander Tichy
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany; Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Laura J Endter
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Kai Steffen Stroh
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | | | - Herre Jelger Risselada
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
6
|
Harper CB, Smillie KJ. Current molecular approaches to investigate pre-synaptic dysfunction. J Neurochem 2021; 157:107-129. [PMID: 33544872 DOI: 10.1111/jnc.15316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
Over the course of the last few decades it has become clear that many neurodevelopmental and neurodegenerative disorders have a synaptic defect, which contributes to pathogenicity. A rise in new techniques, and in particular '-omics'-based methods providing large datasets, has led to an increase in potential proteins and pathways implicated in synaptic function and related disorders. Additionally, advancements in imaging techniques have led to the recent discovery of alternative modes of synaptic vesicle recycling. This has resulted in a lack of clarity over the precise role of different pathways in maintaining synaptic function and whether these new pathways are dysfunctional in neurodevelopmental and neurodegenerative disorders. A greater understanding of the molecular detail of pre-synaptic function in health and disease is key to targeting new proteins and pathways for novel treatments and the variety of new techniques currently available provides an ideal opportunity to investigate these functions. This review focuses on techniques to interrogate pre-synaptic function, concentrating mainly on synaptic vesicle recycling. It further examines techniques to determine the underlying molecular mechanism of pre-synaptic dysfunction and discusses methods to identify molecular targets, along with protein-protein interactions and cellular localization. In combination, these techniques will provide an expanding and more complete picture of pre-synaptic function. With the application of recent technological advances, we are able to resolve events with higher spatial and temporal resolution, leading research towards a greater understanding of dysfunction at the presynapse and the role it plays in pathogenicity.
Collapse
Affiliation(s)
- Callista B Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| |
Collapse
|
7
|
Tanner H, Hodgson L, Mantell J, Verkade P. Fluorescent platinum nanoclusters as correlative light electron microscopy probes. Methods Cell Biol 2021; 162:39-68. [PMID: 33707021 DOI: 10.1016/bs.mcb.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Correlative Imaging (CI) visualizes a single sample/region of interest with two or more imaging modalities. The technique seeks to elucidate information that may not be discernible by using either of the constituent techniques in isolation. Correlative Light Electron Microscopy (CLEM) can be employed to streamline workflows, i.e., using fluorescent signals in the light microscope (LM) to inform the user of regions which should be imaged with electron microscopy (EM). The efficacy of correlative techniques requires high spatial resolution of signals from both imaging modalities. Ideally, a single point should originate from both the fluorescence and electron density. However, many of the ubiquitously used probes have a significant distance between their fluorescence and electron dense portions. Furthermore, electron dense metal nanoparticles used for EM visualization readily quench any proximal adjacent fluorophores. Therefore, accurate registration of both signals becomes difficult. Here we describe fluorescent nanoclusters in the context of a CLEM probe as they are composed of several atoms of a noble metal, in this case platinum, providing electron density. In addition, their structure confers them with fluorescence via a mechanism analogous to quantum dots. The electron dense core gives rise to the fluorescence which enables highly accurate signal registration between epifluorescence and electron imaging modalities. We provide a protocol for the synthesis of the nanoclusters with some additional techniques for their characterization and finally show how they can be used in a CLEM set up.
Collapse
Affiliation(s)
- Hugh Tanner
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Lorna Hodgson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Judith Mantell
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom.
| |
Collapse
|
8
|
DNA origami signposts for identifying proteins on cell membranes by electron cryotomography. Cell 2021; 184:1110-1121.e16. [PMID: 33606980 PMCID: PMC7895908 DOI: 10.1016/j.cell.2021.01.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Electron cryotomography (cryoET), an electron cryomicroscopy (cryoEM) modality, has changed our understanding of biological function by revealing the native molecular details of membranes, viruses, and cells. However, identification of individual molecules within tomograms from cryoET is challenging because of sample crowding and low signal-to-noise ratios. Here, we present a tagging strategy for cryoET that precisely identifies individual protein complexes in tomograms without relying on metal clusters. Our method makes use of DNA origami to produce “molecular signposts” that target molecules of interest, here via fluorescent fusion proteins, providing a platform generally applicable to biological surfaces. We demonstrate the specificity of signpost origami tags (SPOTs) in vitro as well as their suitability for cryoET of membrane vesicles, enveloped viruses, and the exterior of intact mammalian cells. Asymmetric DNA signpost origami tags (SPOTs) precisely localize proteins SPOTs identify specific proteins in electron cryomicroscopy SPOTs have a high contrast “sign” and functionalized “post” base for targeting SPOTs recognize fluorescent fusion proteins on vesicles, viruses, and cell surfaces
Collapse
|
9
|
OUP accepted manuscript. Microscopy (Oxf) 2021; 71:i72-i80. [DOI: 10.1093/jmicro/dfab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/14/2022] Open
|
10
|
Electron tomography and immunogold labeling of plant cells. Methods Cell Biol 2020; 160:21-36. [PMID: 32896317 DOI: 10.1016/bs.mcb.2020.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Electron microscopy enables the imaging of organelles and macromolecular complexes within cells at nanometer scale resolution. Electron tomography of biological samples, either in vitrified ice or fixed and embedded in resin, provides three-dimensional structural information of relatively small volumes (a few cubic microns) of cells at axial resolutions of 1-7nm. This chapter discusses approaches for plant sample preparation by high-pressure freezing/freeze-substitution and resin-embedding for electron tomography and immunogold labeling using transmission electron microscopy.
Collapse
|
11
|
Jiang Z, Jin X, Li Y, Liu S, Liu XM, Wang YY, Zhao P, Cai X, Liu Y, Tang Y, Sun X, Liu Y, Hu Y, Li M, Cai G, Qi X, Chen S, Du LL, He W. Genetically encoded tags for direct synthesis of EM-visible gold nanoparticles in cells. Nat Methods 2020; 17:937-946. [PMID: 32778831 DOI: 10.1038/s41592-020-0911-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/29/2020] [Indexed: 11/09/2022]
Abstract
Genetically encoded tags for single-molecule imaging in electron microscopy (EM) are long-awaited. Here, we report an approach for directly synthesizing EM-visible gold nanoparticles (AuNPs) on cysteine-rich tags for single-molecule visualization in cells. We first uncovered an auto-nucleation suppression mechanism that allows specific synthesis of AuNPs on isolated tags. Next, we exploited this mechanism to develop approaches for single-molecule detection of proteins in prokaryotic cells and achieved an unprecedented labeling efficiency. We then expanded it to more complicated eukaryotic cells and successfully detected the proteins targeted to various organelles, including the membranes of endoplasmic reticulum (ER) and nuclear envelope, ER lumen, nuclear pores, spindle pole bodies and mitochondrial matrices. We further implemented cysteine-rich tag-antibody fusion proteins as new immuno-EM probes. Thus, our approaches should allow biologists to address a wide range of biological questions at the single-molecule level in cellular ultrastructural contexts.
Collapse
Affiliation(s)
- Zhaodi Jiang
- PTN Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Xiumei Jin
- National Institute of Biological Sciences, Beijing, China
| | - Yuhua Li
- National Institute of Biological Sciences, Beijing, China
| | - Sitong Liu
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences, Beijing, China
| | - Ying-Ying Wang
- National Institute of Biological Sciences, Beijing, China
| | - Pei Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Xinbin Cai
- National Institute of Biological Sciences, Beijing, China
| | - Ying Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yaqi Tang
- National Institute of Biological Sciences, Beijing, China
| | - Xiaobin Sun
- National Institute of Biological Sciences, Beijing, China
| | - Yan Liu
- National Institute of Biological Sciences, Beijing, China
| | - Yanyong Hu
- National Institute of Biological Sciences, Beijing, China
| | - Ming Li
- National Institute of Biological Sciences, Beijing, China
| | - Gaihong Cai
- National Institute of Biological Sciences, Beijing, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
| | - Wanzhong He
- National Institute of Biological Sciences, Beijing, China.
| |
Collapse
|
12
|
Dahlberg PD, Saurabh S, Sartor AM, Wang J, Mitchell PG, Chiu W, Shapiro L, Moerner WE. Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in Caulobacter. Proc Natl Acad Sci U S A 2020; 117:13937-13944. [PMID: 32513734 PMCID: PMC7321984 DOI: 10.1073/pnas.2001849117] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Superresolution fluorescence microscopy and cryogenic electron tomography (CET) are powerful imaging methods for exploring the subcellular organization of biomolecules. Superresolution fluorescence microscopy based on covalent labeling highlights specific proteins and has sufficient sensitivity to observe single fluorescent molecules, but the reconstructions lack detailed cellular context. CET has molecular-scale resolution but lacks specific and nonperturbative intracellular labeling techniques. Here, we describe an imaging scheme that correlates cryogenic single-molecule fluorescence localizations with CET reconstructions. Our approach achieves single-molecule localizations with an average lateral precision of 9 nm, and a relative registration error between the set of localizations and CET reconstruction of ∼30 nm. We illustrate the workflow by annotating the positions of three proteins in the bacterium Caulobacter crescentus: McpA, PopZ, and SpmX. McpA, which forms a part of the chemoreceptor array, acts as a validation structure by being visible under both imaging modalities. In contrast, PopZ and SpmX cannot be directly identified in CET. While not directly discernable, PopZ fills a region at the cell poles that is devoid of electron-dense ribosomes. We annotate the position of PopZ with single-molecule localizations and confirm its position within the ribosome excluded region. We further use the locations of PopZ to provide context for localizations of SpmX, a low-copy integral membrane protein sequestered by PopZ as part of a signaling pathway that leads to an asymmetric cell division. Our correlative approach reveals that SpmX localizes along one side of the cell pole and its extent closely matches that of the PopZ region.
Collapse
Affiliation(s)
- Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Saumya Saurabh
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Annina M Sartor
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Jiarui Wang
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Patrick G Mitchell
- Division of Cryo-EM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Wah Chiu
- Division of Cryo-EM and Bioimaging, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| |
Collapse
|
13
|
Otegui MS, Pennington JG. Electron tomography in plant cell biology. Microscopy (Oxf) 2019; 68:69-79. [PMID: 30452668 DOI: 10.1093/jmicro/dfy133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Electron tomography (ET) approaches are based on the imaging of a biological specimen at different tilt angles by transmission electron microscopy (TEM). ET can be applied to both plastic-embedded and frozen samples. Technological advancements in TEM, direct electron detection, automated image collection, and imaging processing algorithms allow for 2-7-nm scale axial resolution in tomographic reconstructions of cells and organelles. In this review, we discussed the application of ET in plant cell biology and new opportunities for imaging plant cells by cryo-ET and other 3D electron microscopy approaches.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison WI, USA.,Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison WI, USA.,Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison WI, USA
| | - Jannice G Pennington
- Institute for Molecular Virology, University of Wisconsin-Madison, 1525 Linden Drive, Madison WI, USA.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
14
|
Sachse M, Fernández de Castro I, Tenorio R, Risco C. The viral replication organelles within cells studied by electron microscopy. Adv Virus Res 2019; 105:1-33. [PMID: 31522702 PMCID: PMC7112055 DOI: 10.1016/bs.aivir.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transmission electron microscopy (TEM) has been crucial to study viral infections. As a result of recent advances in light and electron microscopy, we are starting to be aware of the variety of structures that viruses assemble inside cells. Viruses often remodel cellular compartments to build their replication factories. Remarkably, viruses are also able to induce new membranes and new organelles. Here we revise the most relevant imaging technologies to study the biogenesis of viral replication organelles. Live cell microscopy, correlative light and electron microscopy, cryo-TEM, and three-dimensional imaging methods are unveiling how viruses manipulate cell organization. In particular, methods for molecular mapping in situ in two and three dimensions are revealing how macromolecular complexes build functional replication complexes inside infected cells. The combination of all these imaging approaches is uncovering the viral life cycle events with a detail never seen before.
Collapse
Affiliation(s)
- Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, Paris, France.
| | | | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain.
| |
Collapse
|
15
|
Liu M, Heimlicher MB, Bächler M, Ibeneche-Nnewihe CC, Florin EL, Brunner D, Hoenger A. Glucose starvation triggers filamentous septin assemblies in an S. pombe septin-2 deletion mutant. Biol Open 2019; 8:8/1/bio037622. [PMID: 30602528 PMCID: PMC6361201 DOI: 10.1242/bio.037622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Using correlative light and electron microscopy (CLEM), we studied the intracellular organization by of glucose-starved fission yeast cells (Schizosaccharomyces pombe) with regards to the localization of septin proteins throughout the cytoplasm. Thereby, we found that for cells carrying a deletion of the gene encoding septin-2 (spn2Δ), starvation causes a GFP-tagged version of septin-3 (spn3-GFP) and family members, to assemble into a single, prominent filamentous structure. It was previously shown that during exponential growth, spn2Δ cells form septin-3 polymers. However, the polymers we observed during exponential growth are different from the spn3p-GFP structure we observed in starved cells. Using CLEM, in combination with anti-GFP immunolabeling on plastic-sections, we could assign spn3p-GFP to the filaments we have found in EM pictures. Besides septin-3, these filamentous assemblies most likely also contain septin-1 as an RFP-tagged version of this protein forms a very similar structure in starved spn2Δ cells. Our data correlate phase-contrast and fluorescence microscopy with electron micrographs of plastic-embedded cells, and further on with detailed views of tomographic 3D reconstructions. Cryo-electron microscopy of spn2Δ cells in vitrified sections revealed a very distinct overall morphology of the spn3p-GFP assembly. The fine-structured, regular density pattern suggests the presence of assembled septin-3 filaments that are clearly different from F-actin bundles. Furthermore, we found that starvation causes substantial mitochondria fission, together with massive decoration of their outer membrane by ribosomes.
Collapse
Affiliation(s)
- Minghua Liu
- University of Colorado at Boulder, Department of Molecular, Cellular and Developmental Biology, UCB-0347, Boulder, CO 80309, USA
| | - Maria B Heimlicher
- University of Zürich, Department of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mirjam Bächler
- University of Zürich, Department of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Chieze C Ibeneche-Nnewihe
- University of Texas at Austin, Center for Nonlinear Dynamics and Department of Physics, Austin, TX 78712, USA
| | - Ernst-Ludwig Florin
- University of Texas at Austin, Center for Nonlinear Dynamics and Department of Physics, Austin, TX 78712, USA
| | - Damian Brunner
- University of Zürich, Department of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andreas Hoenger
- University of Colorado at Boulder, Department of Molecular, Cellular and Developmental Biology, UCB-0347, Boulder, CO 80309, USA
| |
Collapse
|
16
|
VIPER is a genetically encoded peptide tag for fluorescence and electron microscopy. Proc Natl Acad Sci U S A 2018; 115:12961-12966. [PMID: 30518560 DOI: 10.1073/pnas.1808626115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many discoveries in cell biology rely on making specific proteins visible within their native cellular environment. There are various genetically encoded tags, such as fluorescent proteins, developed for fluorescence microscopy (FM). However, there are almost no genetically encoded tags that enable cellular proteins to be observed by both FM and electron microscopy (EM). Herein, we describe a technology for labeling proteins with diverse chemical reporters, including bright organic fluorophores for FM and electron-dense nanoparticles for EM. Our technology uses versatile interacting peptide (VIP) tags, a class of genetically encoded tag. We present VIPER, which consists of a coiled-coil heterodimer formed between the genetic tag, CoilE, and a probe-labeled peptide, CoilR. Using confocal FM, we demonstrate that VIPER can be used to highlight subcellular structures or to image receptor-mediated iron uptake. Additionally, we used VIPER to image the iron uptake machinery by correlative light and EM (CLEM). VIPER compared favorably with immunolabeling for imaging proteins by CLEM, and is an enabling technology for protein targets that cannot be immunolabeled. VIPER is a versatile peptide tag that can be used to label and track proteins with diverse chemical reporters observable by both FM and EM instrumentation.
Collapse
|
17
|
Berberian MV, Pocognoni CA, Mayorga LS. A TEM-traceable physiologically functional gold nanoprobe that permeates non-endocytic cells. Int J Nanomedicine 2018; 13:8075-8086. [PMID: 30568446 PMCID: PMC6276607 DOI: 10.2147/ijn.s168149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Nanoparticles’ intracellular fate requires proper internalization. Most cells make use of a battery of internalization pathways, but some are practically sealed, as they lack the biochemical machinery for cellular intake. Non-endocytic cells, such as mammals’ spermatozoa, challenge standard drug-delivery strategies. Purpose In this article, we present a gold nanoprobe that permeates the external and internal membranes of human sperm. Methods Our design makes use of a gold nanoparticle functionalized with a membrane-permeable cysteine-rich recombinant protein. The chimeric protein contains two units of physiologically active metallothioneins (MT) that also provide binding motifs to gold and a cell-penetrating-peptide sequence (CPP) that confers cell permeability to the nanoparticle. Results Transmission electron microscopy, indirect immunofluorescence, and functional assays show that the nanoprobe is readily internalized in sperm, without compromising cell integrity, while preserving MT’s physiological activity. Our findings highlight the potential of CPP-functionalized nanogold for investigating the physiology of otherwise impermeable non-endocytic cells.
Collapse
Affiliation(s)
- Maria Victoria Berberian
- Institute of Histology and Embryology of Mendoza - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina,
| | - Cristian A Pocognoni
- Institute of Histology and Embryology of Mendoza - CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luis S Mayorga
- Institute of Histology and Embryology of Mendoza - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina, .,Institute of Histology and Embryology of Mendoza - CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
18
|
Melia CE, Bharat TAM. Locating macromolecules and determining structures inside bacterial cells using electron cryotomography. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:973-981. [PMID: 29908328 PMCID: PMC6052677 DOI: 10.1016/j.bbapap.2018.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023]
Abstract
Electron cryotomography (cryo-ET) is an imaging technique uniquely suited to the study of bacterial ultrastructure and cell biology. Recent years have seen a surge in structural and cell biology research on bacteria using cryo-ET. This research has driven major technical developments in the field, with applications emerging to address a wide range of biological questions. In this review, we explore the diversity of cryo-ET approaches used for structural and cellular microbiology, with a focus on in situ localization and structure determination of macromolecules. The first section describes strategies employed to locate target macromolecules within large cellular volumes. Next, we explore methods to study thick specimens by sample thinning. Finally, we review examples of macromolecular structure determination in a cellular context using cryo-ET. The examples outlined serve as powerful demonstrations of how the cellular location, structure, and function of any bacterial macromolecule of interest can be investigated using cryo-ET.
Collapse
Affiliation(s)
- Charlotte E Melia
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; Central Oxford Structural and Molecular Imaging Centre, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
19
|
Clarke NI, Royle SJ. FerriTag is a new genetically-encoded inducible tag for correlative light-electron microscopy. Nat Commun 2018; 9:2604. [PMID: 29973588 PMCID: PMC6031641 DOI: 10.1038/s41467-018-04993-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 05/24/2018] [Indexed: 01/20/2023] Open
Abstract
A current challenge is to develop tags to precisely visualize proteins in cells by light and electron microscopy. Here, we introduce FerriTag, a genetically-encoded chemically-inducible tag for correlative light-electron microscopy. FerriTag is a fluorescent recombinant electron-dense ferritin particle that can be attached to a protein-of-interest using rapamycin-induced heterodimerization. We demonstrate the utility of FerriTag for correlative light-electron microscopy by labeling proteins associated with various intracellular structures including mitochondria, plasma membrane, and clathrin-coated pits and vesicles. FerriTagging has a good signal-to-noise ratio and a labeling resolution of approximately 10 nm. We demonstrate how FerriTagging allows nanoscale mapping of protein location relative to a subcellular structure, and use it to detail the distribution and conformation of huntingtin-interacting protein 1 related (HIP1R) in and around clathrin-coated pits.
Collapse
Affiliation(s)
- Nicholas I Clarke
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
20
|
Shi Y, Wang L, Zhang J, Zhai Y, Sun F. Determining the target protein localization in 3D using the combination of FIB-SEM and APEX2. BIOPHYSICS REPORTS 2017; 3:92-99. [PMID: 29238746 PMCID: PMC5719812 DOI: 10.1007/s41048-017-0043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/24/2017] [Indexed: 11/05/2022] Open
Abstract
Determining the cellular localization of proteins of interest at nanometer resolution is necessary for elucidating their functions. Besides super-resolution fluorescence microscopy, conventional electron microscopy (EM) combined with immunolabeling or clonable EM tags provides a unique approach to correlate protein localization information and cellular ultrastructural information. However, there are still rare cases of such correlation in three-dimensional (3D) spaces. Here, we developed an approach by combining the focus ion beam scanning electron microscopy (FIB-SEM) and a promising clonable EM tag APEX2 (an enhanced ascorbate peroxidase 2) to determine the target protein localization within 3D cellular ultrastructural context. We further utilized this approach to study the 3D localization of mitochondrial dynamics-related proteins (MiD49/51, Mff, Fis1, and Mfn2) in the cells where the target proteins were overexpressed. We found that all the target proteins were located at the surface of the mitochondrial outer membrane accompanying with mitochondrial clusters. Mid49/51, Mff, and hFis1 spread widely around the mitochondrial surface while Mfn2 only exists at the contact sites.
Collapse
Affiliation(s)
- Yang Shi
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,Sino-Danish Center for Education and Research, Beijing, 100190 China
| | - Li Wang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianguo Zhang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yujia Zhai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China.,Sino-Danish Center for Education and Research, Beijing, 100190 China
| |
Collapse
|
21
|
Oda T. Three-dimensional structural labeling microscopy of cilia and flagella. Microscopy (Oxf) 2017; 66:234-244. [PMID: 28541401 DOI: 10.1093/jmicro/dfx018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023] Open
Abstract
Locating a molecule within a cell using protein-tagging and immunofluorescence is a fundamental technique in cell biology, whereas in three-dimensional electron microscopy, locating a subunit within a macromolecular complex remains challenging. Recently, we developed a new structural labeling method for cryo-electron tomography by taking advantage of the biotin-streptavidin system, and have intensively used this method to locate a number of proteins and protein domains in cilia and flagella. In this review, we summarize our findings on the three-dimensional architecture of the axoneme, especially the importance of coiled-coil proteins. In addition, we provide an overview of the technical aspects of our structural labeling method.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|