1
|
McLaughlin MR, Weaver SA, Syed F, Evans-Molina C. Advanced Imaging Techniques for the Characterization of Subcellular Organelle Structure in Pancreatic Islet β Cells. Compr Physiol 2023; 14:5243-5267. [PMID: 38158370 PMCID: PMC11490899 DOI: 10.1002/cphy.c230002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Type 2 diabetes (T2D) affects more than 32.3 million individuals in the United States, creating an economic burden of nearly $966 billion in 2021. T2D results from a combination of insulin resistance and inadequate insulin secretion from the pancreatic β cell. However, genetic and physiologic data indicate that defects in β cell function are the chief determinant of whether an individual with insulin resistance will progress to a diagnosis of T2D. The subcellular organelles of the insulin secretory pathway, including the endoplasmic reticulum, Golgi apparatus, and secretory granules, play a critical role in maintaining the heavy biosynthetic burden of insulin production, processing, and secretion. In addition, the mitochondria enable the process of insulin release by integrating the metabolism of nutrients into energy output. Advanced imaging techniques are needed to determine how changes in the structure and composition of these organelles contribute to the loss of insulin secretory capacity in the β cell during T2D. Several microscopy techniques, including electron microscopy, fluorescence microscopy, and soft X-ray tomography, have been utilized to investigate the structure-function relationship within the β cell. In this overview article, we will detail the methodology, strengths, and weaknesses of each approach. © 2024 American Physiological Society. Compr Physiol 14:5243-5267, 2024.
Collapse
Affiliation(s)
- Madeline R. McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Staci A. Weaver
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Beatty KE, López CS. Characteristics of genetic tags for correlative light and electron microscopy. Curr Opin Chem Biol 2023; 76:102369. [PMID: 37453163 DOI: 10.1016/j.cbpa.2023.102369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Fluorescence microscopy is indispensable in live cell studies of fluorescently-labeled proteins, but has limited resolution and context. Electron microscopy offers high-resolution imaging of cellular ultrastructure, including membranes, organelles, and other nanoscale features. However, identifying proteins by EM remains a substantial challenge. There is potential to combine the strengths of both FM and EM through correlative light and EM (CLEM), and bridging the two modalities enables new discoveries and biological insights. CLEM enables cellular proteins to be observed dynamically, across size scales, and in relationship to sub-cellular structures. A central limitation to using CLEM is the scarcity of methods for labeling proteins with CLEM reporters. This review will describe the characteristics of genetic tags for CLEM that are available today, including fixation-resistant fluorescent proteins, 3,3'-diaminobenzidine (DAB)-based tags, metal-chelating tags, DNA origami tags, and VIP tags.
Collapse
Affiliation(s)
- Kimberly E Beatty
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Claudia S López
- Department of Biomedical Engineering Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Fermie J, de Jager L, Foster HE, Veenendaal T, de Heus C, van Dijk S, ten Brink C, Oorschot V, Yang L, Li W, Müller WH, Howes S, Carter AP, Förster F, Posthuma G, Gerritsen HC, Klumperman J, Liv N. Bimodal endocytic probe for three-dimensional correlative light and electron microscopy. CELL REPORTS METHODS 2022; 2:100220. [PMID: 35637912 PMCID: PMC9142762 DOI: 10.1016/j.crmeth.2022.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 02/04/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022]
Abstract
We present a bimodal endocytic tracer, fluorescent BSA-gold (fBSA-Au), as a fiducial marker for 2D and 3D correlative light and electron microscopy (CLEM) applications. fBSA-Au consists of colloidal gold (Au) particles stabilized with fluorescent BSA. The conjugate is efficiently endocytosed and distributed throughout the 3D endolysosomal network of cells and has an excellent visibility in both fluorescence microscopy (FM) and electron microscopy (EM). We demonstrate that fBSA-Au facilitates rapid registration in several 2D and 3D CLEM applications using Tokuyasu cryosections, resin-embedded material, and cryoelectron microscopy (cryo-EM). Endocytosed fBSA-Au benefits from a homogeneous 3D distribution throughout the endosomal system within the cell, does not obscure any cellular ultrastructure, and enables accurate (50-150 nm) correlation of fluorescence to EM data. The broad applicability and visibility in both modalities makes fBSA-Au an excellent endocytic fiducial marker for 2D and 3D (cryo)CLEM applications.
Collapse
Affiliation(s)
- Job Fermie
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Leanne de Jager
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Helen E. Foster
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Cambridge, UK
| | - Tineke Veenendaal
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cecilia de Heus
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Suzanne van Dijk
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Corlinda ten Brink
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Viola Oorschot
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lin Yang
- Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wally H. Müller
- Microbiology, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Stuart Howes
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Andrew P. Carter
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Cambridge, UK
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - George Posthuma
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hans C. Gerritsen
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Stelate A, Tihlaříková E, Schwarzerová K, Neděla V, Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules 2021; 11:1407. [PMID: 34680040 PMCID: PMC8533460 DOI: 10.3390/biom11101407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Fluorescence light microscopy provided convincing evidence for the domain organization of plant plasma membrane (PM) proteins. Both peripheral and integral PM proteins show an inhomogeneous distribution within the PM. However, the size of PM nanodomains and protein clusters is too small to accurately determine their dimensions and nano-organization using routine confocal fluorescence microscopy and super-resolution methods. To overcome this limitation, we have developed a novel correlative light electron microscopy method (CLEM) using total internal reflection fluorescence microscopy (TIRFM) and advanced environmental scanning electron microscopy (A-ESEM). Using this technique, we determined the number of auxin efflux carriers from the PINFORMED (PIN) family (NtPIN3b-GFP) within PM nanodomains of tobacco cell PM ghosts. Protoplasts were attached to coverslips and immunostained with anti-GFP primary antibody and secondary antibody conjugated to fluorochrome and gold nanoparticles. After imaging the nanodomains within the PM with TIRFM, the samples were imaged with A-ESEM without further processing, and quantification of the average number of molecules within the nanodomain was performed. Without requiring any post-fixation and coating procedures, this method allows to study details of the organization of auxin carriers and other plant PM proteins.
Collapse
Affiliation(s)
- Ayoub Stelate
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; (A.S.); (K.S.)
| | - Eva Tihlaříková
- Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Královopolská 147, 612 64 Brno, Czech Republic; (E.T.); (V.N.)
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; (A.S.); (K.S.)
| | - Vilém Neděla
- Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Královopolská 147, 612 64 Brno, Czech Republic; (E.T.); (V.N.)
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; (A.S.); (K.S.)
| |
Collapse
|
5
|
Ignacio BJ, Bakkum T, Bonger KM, Martin NI, van Kasteren SI. Metabolic labeling probes for interrogation of the host-pathogen interaction. Org Biomol Chem 2021; 19:2856-2870. [PMID: 33725048 DOI: 10.1039/d0ob02517h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial infections are still one of the leading causes of death worldwide; despite the near-ubiquitous availability of antibiotics. With antibiotic resistance on the rise, there is an urgent need for novel classes of antibiotic drugs. One particularly troublesome class of bacteria are those that have evolved highly efficacious mechanisms for surviving inside the host. These contribute to their virulence by immune evasion, and make them harder to treat with antibiotics due to their residence inside intracellular membrane-limited compartments. This has sparked the development of new chemical reporter molecules and bioorthogonal probes that can be metabolically incorporated into bacteria to provide insights into their activity status. In this review, we provide an overview of several classes of metabolic labeling probes capable of targeting either the peptidoglycan cell wall, the mycomembrane of mycobacteria and corynebacteria, or specific bacterial proteins. In addition, we highlight several important insights that have been made using these metabolic labeling probes.
Collapse
Affiliation(s)
- Bob J Ignacio
- Institute for Molecules and Materials, Radbout Universiteit, Nijmegen, Gelderland, Netherlands
| | | | | | | | | |
Collapse
|
6
|
Peters S, Kaiser L, Fink J, Schumacher F, Perschin V, Schlegel J, Sauer M, Stigloher C, Kleuser B, Seibel J, Schubert-Unkmeir A. Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria. Sci Rep 2021; 11:4300. [PMID: 33619350 PMCID: PMC7900124 DOI: 10.1038/s41598-021-83813-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 11/21/2022] Open
Abstract
Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce ‘click-AT-CLEM’, a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Lena Kaiser
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Julian Fink
- Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Toxicology, University of Potsdam, Nuthetal, Germany.,Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Jürgen Seibel
- Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
7
|
Shewring JR, Hodgson L, Bryant HL, Bullough PA, Weinstein JA, Verkade P. Refining a correlative light electron microscopy workflow using luminescent metal complexes. Methods Cell Biol 2021; 162:69-87. [PMID: 33707023 DOI: 10.1016/bs.mcb.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The potential for increasing the application of Correlative Light Electron Microscopy (CLEM) technologies in life science research is hindered by the lack of suitable molecular probes that are emissive, photostable, and scatter electrons well. Most brightly fluorescent organic molecules are intrinsically poor electron-scatterers, while multi-metallic compounds scatter electrons well but are usually non-luminescent. Thus, the goal of CLEM to image the same object of interest on the continuous scale from hundreds of microns to nanometers remains a major challenge partially due to requirements for a single probe to be suitable for light (LM) and electron microscopy (EM). Some of the main CLEM probes, based on gold nanoparticles appended with fluorophores and quantum dots (QD) have presented significant drawbacks. Here we present an Iridium-based luminescent metal complex (Ir complex 1) as a probe and describe how we have developed a CLEM workflow based on such metal complexes.
Collapse
Affiliation(s)
| | - Lorna Hodgson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Helen L Bryant
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Per A Bullough
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom.
| |
Collapse
|
8
|
Keevend K, Krummenacher R, Kungas E, Gerken LRH, Gogos A, Stiefel M, Herrmann IK. Correlative Cathodoluminescence Electron Microscopy: Immunolabeling Using Rare-Earth Element Doped Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004615. [PMID: 33090693 DOI: 10.1002/smll.202004615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The understanding of living systems and their building blocks relies on the assessment of structure-function relationships at the nanoscale. Although electron microscopy (EM) gives access to ultrastructural imaging with nanometric resolution, the unambiguous localization of specific molecules is challenging. An EM approach capable of localizing biomolecules with respect to the cellular ultrastructure will offer a direct route to the molecular blueprints of biological systems. In an approach departing from conventional correlative imaging, an electron beam may be used as excitation source to generate optical emission with nanometric resolution, that is, cathodoluminescence (CL). Once suitable luminescent labels become available, CL may be harnessed to enable identification of biomolecule labels based on spectral signatures rather than electron density and size. This work presents CL-enabled immunolabeling based on rare-earth element doped nanoparticle-labels allowing specific molecules to be visualized at nanoscale resolution in the context of the cellular ultrastructure. Folic acid decorated nanoparticles exhibiting single particle CL emission are employed to specifically label receptors and identify characteristic receptor clustering on the surface of cancer cells. This demonstration of CL immunotargeting gives access to protein localization in the context of the cellular ultrastructure and paves the way for immunolabeling of multiple proteins in EM.
Collapse
Affiliation(s)
- Kerda Keevend
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, Zürich, CH-8092, Switzerland
| | - Roman Krummenacher
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
| | - Egle Kungas
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
| | - Lukas R H Gerken
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, Zürich, CH-8092, Switzerland
| | - Alexander Gogos
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
| | - Michael Stiefel
- Laboratory for Transport at Nanoscale Interfaces, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, CH-9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Sonneggstrasse 3, Zürich, CH-8092, Switzerland
| |
Collapse
|
9
|
Keevend K, Coenen T, Herrmann IK. Correlative cathodoluminescence electron microscopy bioimaging: towards single protein labelling with ultrastructural context. NANOSCALE 2020; 12:15588-15603. [PMID: 32677648 DOI: 10.1039/d0nr02563a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The understanding of living systems and their building blocks relies heavily on the assessment of structure-function relationships at the nanoscale. Ever since the development of the first optical microscope, the reliance of scientists across disciplines on microscopy has increased. The development of the first electron microscope and with it the access to information at the nanoscale has prompted numerous disruptive discoveries. While fluorescence imaging allows identification of specific entities based on the labelling with fluorophores, the unlabelled constituents of the samples remain invisible. In electron microscopy on the other hand, structures can be comprehensively visualized based on their distinct electron density and geometry. Although electron microscopy is a powerful tool, it does not implicitly provide information on the location and activity of specific organic molecules. While correlative light and electron microscopy techniques have attempted to unify the two modalities, the resolution mismatch between the two data sets poses major challenges. Recent developments in optical super resolution microscopy enable high resolution correlative light and electron microscopy, however, with considerable constraints due to sample preparation requirements. Labelling of specific structures directly for electron microscopy using small gold nanoparticles (i.e. immunogold) has been used extensively. However, identification of specific entities solely based on electron contrast, and the differentiation from endogenous dense granules, remains challenging. Recently, the use of correlative cathodoluminescence electron microscopy (CCLEM) imaging based on luminescent inorganic nanocrystals has been proposed. While nanometric resolution can be reached for both the electron and the optical signal, high energy electron beams are potentially damaging to the sample. In this review, we discuss the opportunities of (volumetric) multi-color single protein labelling based on correlative cathodoluminescence electron microscopy, and its prospective impact on biomedical research in general. We elaborate on the potential challenges of correlative cathodoluminescence electron microscopy-based bioimaging and benchmark CCLEM against alternative high-resolution correlative imaging techniques.
Collapse
Affiliation(s)
- Kerda Keevend
- Laboratory for Particles Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St Gallen, Switzerland.
| | | | | |
Collapse
|
10
|
Keevend K, Puust L, Kurvits K, Gerken LRH, Starsich FHL, Li JH, Matter MT, Spyrogianni A, Sotiriou GA, Stiefel M, Herrmann IK. Ultrabright and Stable Luminescent Labels for Correlative Cathodoluminescence Electron Microscopy Bioimaging. NANO LETTERS 2019; 19:6013-6018. [PMID: 31373824 DOI: 10.1021/acs.nanolett.9b01819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanistic understanding of structure-function relationships in biological systems heavily relies on imaging. While fluorescence microscopy allows the study of specific proteins following their labeling with fluorophores, electron microscopy enables holistic ultrastructural analysis based on differences in electron density. To identify specific proteins in electron microscopy, immunogold labeling has become the method of choice. However, the distinction of immunogold-based protein labels from naturally occurring electron dense granules and the identification of several different proteins in the same sample remain challenging. Correlative cathodoluminescence electron microscopy (CCLEM) bioimaging has recently been suggested to provide an attractive alternative based on labels emitting characteristic light. While luminescence excitation by an electron beam enables subdiffraction imaging, structural damage to the sample by high-energy electrons has been identified as a potential obstacle. Here, we investigate the feasibility of various commonly used luminescent labels for CCLEM bioimaging. We demonstrate that organic fluorophores and semiconductor quantum dots suffer from a considerable loss of emission intensity, even when using moderate beam voltages (2 kV) and currents (0.4 nA). Rare-earth element-doped nanocrystals, in particular Y2O3:Tb3+ and YVO4:Bi3+,Eu3+ nanoparticles with green and orange-red emission, respectively, feature remarkably high brightness and stability in the CCLEM bioimaging setting. We further illustrate how these nanocrystals can be readily differentiated from morphologically similar naturally occurring dense granules based on optical emission, making them attractive nanoparticle core materials for molecular labeling and (multi)color CCLEM.
Collapse
Affiliation(s)
- Kerda Keevend
- Laboratory for Particles Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
- Optical Nanomaterial Group, Institute for Quantum Electronics, Department of Physics , ETH Zurich , Auguste-Piccard- Hof 1 , CH-8093 Zurich , Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Laurits Puust
- Laboratory of Laser Spectroscopy, Institute of Physics , University of Tartu , W. Ostwaldi St 1 , 50411 Tartu , Estonia
| | - Karoliine Kurvits
- Laboratory of Laser Spectroscopy, Institute of Physics , University of Tartu , W. Ostwaldi St 1 , 50411 Tartu , Estonia
| | - Lukas R H Gerken
- Laboratory for Particles Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Fabian H L Starsich
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Jian-Hao Li
- Laboratory for Particles Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Martin T Matter
- Laboratory for Particles Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Anastasia Spyrogianni
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir-Prelog-Weg 1-5 , CH-8093 Zurich , Switzerland
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology , Karolinska Institutet , SE-17177 Stockholm , Sweden
| | - Michael Stiefel
- Laboratory for Transport at Nanoscale Interfaces, Department Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Inge K Herrmann
- Laboratory for Particles Biology Interactions, Department of Materials Meet Life , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| |
Collapse
|
11
|
van Elsland DM, Pujals S, Bakkum T, Bos E, Oikonomeas‐Koppasis N, Berlin I, Neefjes J, Meijer AH, Koster AJ, Albertazzi L, van Kasteren SI. Ultrastructural Imaging of Salmonella-Host Interactions Using Super-resolution Correlative Light-Electron Microscopy of Bioorthogonal Pathogens. Chembiochem 2018; 19:1766-1770. [PMID: 29869826 PMCID: PMC6120560 DOI: 10.1002/cbic.201800230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 01/06/2023]
Abstract
The imaging of intracellular pathogens inside host cells is complicated by the low resolution and sensitivity of fluorescence microscopy and by the lack of ultrastructural information to visualize the pathogens. Herein, we present a new method to visualize these pathogens during infection that circumvents these problems: by using a metabolic hijacking approach to bioorthogonally label the intracellular pathogen Salmonella Typhimurium and by using these bioorthogonal groups to introduce fluorophores compatible with stochastic optical reconstruction microscopy (STORM) and placing this in a correlative light electron microscopy (CLEM) workflow, the pathogen can be imaged within its host cell context Typhimurium with a resolution of 20 nm. This STORM-CLEM approach thus presents a new approach to understand these pathogens during infection.
Collapse
Affiliation(s)
- Daphne M. van Elsland
- Leiden Institute of Chemistry andThe Institute for Chemical ImmunologyLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
- Department of Cell and Chemical BiologyInstitute for Chemical ImmunologyLeiden University Medical Center LUMCEinthovenweg 222333 ZCLeidenThe Netherlands
| | - Sílvia Pujals
- Department of Nanoscopy for NanomedicineInstitute of Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology08028BarcelonaSpain
| | - Thomas Bakkum
- Leiden Institute of Chemistry andThe Institute for Chemical ImmunologyLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Erik Bos
- Department of Electron MicroscopyLeiden University Medical Center LUMCEinthovenweg 222333 ZCLeidenThe Netherlands
| | - Nikolaos Oikonomeas‐Koppasis
- Leiden Institute of Chemistry andThe Institute for Chemical ImmunologyLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical BiologyInstitute for Chemical ImmunologyLeiden University Medical Center LUMCEinthovenweg 222333 ZCLeidenThe Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical BiologyInstitute for Chemical ImmunologyLeiden University Medical Center LUMCEinthovenweg 222333 ZCLeidenThe Netherlands
| | - Annemarie H. Meijer
- Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
| | - Abraham J. Koster
- Department of Electron MicroscopyLeiden University Medical Center LUMCEinthovenweg 222333 ZCLeidenThe Netherlands
| | - Lorenzo Albertazzi
- Department of Nanoscopy for NanomedicineInstitute of Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology08028BarcelonaSpain
- Department of Biomedical Engineering and Institute of Complex Molecular SystemsEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Sander I. van Kasteren
- Leiden Institute of Chemistry andThe Institute for Chemical ImmunologyLeiden UniversityEinsteinweg 55, 2333CCLeidenThe Netherlands
| |
Collapse
|