1
|
McClelland SC, Attard MRG, Bowen J, Horrocks NPC, Jamie GA, Dixit T, Spottiswoode CN, Portugal SJ. Eggshell composition and surface properties of avian brood-parasitic species compared with non-parasitic species. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221023. [PMID: 37234505 PMCID: PMC10206472 DOI: 10.1098/rsos.221023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The eggs of avian obligate brood-parasitic species have multiple adaptations to deceive hosts and optimize development in host nests. While the structure and composition of the eggshell in all birds is essential for embryo growth and protection from external threats, parasitic eggs may face specific challenges such as high microbial loads, rapid laying and ejection by the host parents. We set out to assess whether eggshells of avian brood-parasitic species have either (i) specialized structural properties, to meet the demands of a brood-parasitic strategy or (ii) similar structural properties to eggs of their hosts, due to the similar nest environment. We measured the surface topography (roughness), wettability (how well surfaces repel water) and calcium content of eggshells of a phylogenetically and geographically diverse range of brood-parasitic species (representing four of the seven independent lineages of avian brood-parasitic species), their hosts and close relatives of the parasites. These components of the eggshell structure have been demonstrated previously to influence such factors as the risk of microbial infection and overall shell strength. Within a phylogenetically controlled framework, we found no overall significant differences in eggshell roughness, wettability and calcium content between (i) parasitic and non-parasitic species, or (ii) parasitic species and their hosts. Both the wettability and calcium content of the eggs from brood-parasitic species were not more similar to those of their hosts' eggs than expected by chance. By contrast, the mean surface roughness of the eggs of brood-parasitic species was more similar to that of their hosts' eggs than expected by chance, suggesting brood-parasitic species may have evolved to lay eggs that match the host nest environment for this trait. The lack of significant overall differences between parasitic and non-parasitic species, including hosts, in the traits we measured, suggests that phylogenetic signal, as well as general adaptations to the nest environment and for embryo development, outweigh any influence of a parasitic lifestyle on these eggshell properties.
Collapse
Affiliation(s)
- Stephanie C. McClelland
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Marie R. G. Attard
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- School of Engineering and Innovation, Open University, Milton Keynes MK7 6AA, UK
| | - James Bowen
- School of Engineering and Innovation, Open University, Milton Keynes MK7 6AA, UK
| | - Nicholas P. C. Horrocks
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge University, Cambridge CB2 0AW, UK
| | - Gabriel A. Jamie
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Tanmay Dixit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Claire N. Spottiswoode
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- The Natural History Museum, Tring, Herts HP23 6AP, UK
| |
Collapse
|
2
|
Hechenleitner EM, Fernandez Blanco MV, Núñez-Campero SR, Fiorelli LE, Bona P. Unexpected morphological variability in the eggshells of the South American caimans Caiman latirostris and Caiman yacare. Sci Rep 2023; 13:4894. [PMID: 36966165 PMCID: PMC10039913 DOI: 10.1038/s41598-023-31837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023] Open
Abstract
Eggshell morphology is a valuable indicator of the local conditions within the nests of modern crocodilians and birds. In contrast to these latter, the anatomical structure of the eggshells of most crocodilian species is practically unknown. Here, we provide the first characterization of crocodilian eggshells, using x-ray micro-CT scans. We studied eggshells of Caiman latirostris and Caiman yacare from various developmental stages that coincide with the beginning of embryonic ossification. The new 3D renderings revealed complex ornamentation, unique among crocodilians, and amphora-shaped pore canals, some of which converge in single pore openings. We also documented a high density of pore canals with a gas diffusion capacity 45 times higher than the average predicted for modern avian eggshells. The external ornamentation and the thickness of the compact layer of the eggshells (i.e. excluding ornamentation) showed ontogenetic and interspecific differences that could be related to nesting materials and nesting areas selected by each species. The shell features described here evidence a greater structural complexity than previously recognized in phylogenetically close, sympatric crocodilian species. Further comprehensive morphological analyses on other modern and fossil crocodilian eggshells using micro-CT technology will shed new light on the evolution of reproductive strategies in this intriguing archosaur clade.
Collapse
Affiliation(s)
- E Martín Hechenleitner
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina.
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLaR, SEGEMAR, UNCa, CONICET, Entre Ríos y Mendoza S/N, 5301, Anillaco, La Rioja, Argentina.
- Instituto de Biología de La Conservación y Paleobiología (IBICOPA) DACEFyN-UNLaR, Av. Gob. Vernet y Apóstol Felipe, 5300, La Rioja, Argentina.
| | - María V Fernandez Blanco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina.
- División Paleontología Vertebrados, Anexo II Laboratorios del Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calles 122 y 60, B1900FWA, La Plata, Buenos Aires, Argentina.
| | - Segundo R Núñez-Campero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLaR, SEGEMAR, UNCa, CONICET, Entre Ríos y Mendoza S/N, 5301, Anillaco, La Rioja, Argentina
- Instituto de Biología de La Conservación y Paleobiología (IBICOPA) DACEFyN-UNLaR, Av. Gob. Vernet y Apóstol Felipe, 5300, La Rioja, Argentina
| | - Lucas E Fiorelli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLaR, SEGEMAR, UNCa, CONICET, Entre Ríos y Mendoza S/N, 5301, Anillaco, La Rioja, Argentina
| | - Paula Bona
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina
- División Paleontología Vertebrados, Anexo II Laboratorios del Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calles 122 y 60, B1900FWA, La Plata, Buenos Aires, Argentina
| |
Collapse
|
3
|
Choi S, Hauber ME, Legendre LJ, Kim NH, Lee YN, Varricchio DJ. Microstructural and crystallographic evolution of palaeognath (Aves) eggshells. eLife 2023; 12:e81092. [PMID: 36719067 PMCID: PMC9889092 DOI: 10.7554/elife.81092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/11/2022] [Indexed: 02/01/2023] Open
Abstract
The avian palaeognath phylogeny has been recently revised significantly due to the advancement of genome-wide comparative analyses and provides the opportunity to trace the evolution of the microstructure and crystallography of modern dinosaur eggshells. Here, eggshells of all major clades of Palaeognathae (including extinct taxa) and selected eggshells of Neognathae and non-avian dinosaurs are analysed with electron backscatter diffraction. Our results show the detailed microstructures and crystallographies of (previously) loosely categorized ostrich-, rhea-, and tinamou-style morphotypes of palaeognath eggshells. All rhea-style eggshell appears homologous, while respective ostrich-style and tinamou-style morphotypes are best interpreted as homoplastic morphologies (independently acquired). Ancestral state reconstruction and parsimony analysis additionally show that rhea-style eggshell represents the ancestral state of palaeognath eggshells both in microstructure and crystallography. The ornithological and palaeontological implications of the current study are not only helpful for the understanding of evolution of modern and extinct dinosaur eggshells, but also aid other disciplines where palaeognath eggshells provide useful archive for comparative contrasts (e.g. palaeoenvironmental reconstructions, geochronology, and zooarchaeology).
Collapse
Affiliation(s)
- Seung Choi
- Department of Earth Sciences, Montana State UniversityBozemanUnited States
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-ChampaignUrbanaUnited States
| | - Lucas J Legendre
- Department of Geological Sciences, University of Texas at AustinAustinUnited States
| | - Noe-Heon Kim
- School of Earth and Environmental Sciences, Seoul National UniversitySeoulRepublic of Korea
- Department of Geosciences, Princeton UniversityPrincetonUnited States
| | - Yuong-Nam Lee
- School of Earth and Environmental Sciences, Seoul National UniversitySeoulRepublic of Korea
| | - David J Varricchio
- Department of Earth Sciences, Montana State UniversityBozemanUnited States
| |
Collapse
|
4
|
Ancient proteins resolve controversy over the identity of Genyornis eggshell. Proc Natl Acad Sci U S A 2022; 119:e2109326119. [PMID: 35609205 PMCID: PMC9995833 DOI: 10.1073/pnas.2109326119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The realization that ancient biomolecules are preserved in "fossil" samples has revolutionized archaeological science. Protein sequences survive longer than DNA, but their phylogenetic resolution is inferior; therefore, careful assessment of the research questions is required. Here, we show the potential of ancient proteins preserved in Pleistocene eggshell in addressing a longstanding controversy in human and animal evolution: the identity of the extinct bird that laid large eggs which were exploited by Australia's indigenous people. The eggs had been originally attributed to the iconic extinct flightless bird Genyornis newtoni (†Dromornithidae, Galloanseres) and were subsequently dated to before 50 ± 5 ka by Miller et al. [Nat. Commun. 7, 10496 (2016)]. This was taken to represent the likely extinction date for this endemic megafaunal species and thus implied a role of humans in its demise. A contrasting hypothesis, according to which the eggs were laid by a large mound-builder megapode (Megapodiidae, Galliformes), would therefore acquit humans of their responsibility in the extinction of Genyornis. Ancient protein sequences were reconstructed and used to assess the evolutionary proximity of the undetermined eggshell to extant birds, rejecting the megapode hypothesis. Authentic ancient DNA could not be confirmed from these highly degraded samples, but morphometric data also support the attribution of the eggshell to Genyornis. When used in triangulation to address well-defined hypotheses, paleoproteomics is a powerful tool for reconstructing the evolutionary history in ancient samples. In addition to the clarification of phylogenetic placement, these data provide a more nuanced understanding of the modes of interactions between humans and their environment.
Collapse
|
5
|
Legendre LJ, Choi S, Clarke JA. The diverse terminology of reptile eggshell microstructure and its effect on phylogenetic comparative analyses. J Anat 2022; 241:641-666. [PMID: 35758681 PMCID: PMC9358755 DOI: 10.1111/joa.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Reptile eggshell ensures water and gas exchange during incubation and plays a key role in reproductive success. The diversity of reptilian incubation and life history strategies has led to many clade-specific structural adaptations of their eggshell, which have been studied in extant taxa (i.e. birds, crocodilians, turtles, and lepidosaurs). Most studies on non-avian eggshells were performed over 30 years ago and categorized reptile eggshells into two main types: "hard" and "soft" - sometimes with a third intermediate category, "semi-rigid." In recent years, however, debate over the evolution of eggshell structure of major reptile clades has revealed how definitions of hard and soft eggshells influence inferred deep-time evolutionary patterns. Here, we review the diversity of extant and fossil eggshell with a focus on major reptile clades, and the criteria that have been used to define hard, soft, and semi-rigid eggshells. We show that all scoring approaches that retain these categories discretize continuous quantitative traits (e.g. eggshell thickness) and do not consider independent variation of other functionally important microstructural traits (e.g. degree of calcification, shell unit inner structure). We demonstrate the effect of three published approaches to discretizing eggshell type into hard, semi-rigid, and soft on ancestral state reconstructions using 200+ species representing all major extant and extinct reptile clades. These approaches result in different ancestral states for all major clades including Archosauria and Dinosauria, despite a difference in scoring for only 1-4% of the sample. Proposed scenarios of reptile eggshell evolution are highly conditioned by sampling, tree calibration, and lack of congruence between definitions of eggshell type. We conclude that the traditional "soft/hard/semi-rigid" classification of reptilian eggshells should be abandoned and provide guidelines for future descriptions focusing on specific functionally relevant characteristics (e.g. inner structures of shell units, pores, and membrane elements), analyses of these traits in a phylogenetic context, and sampling of previously undescribed taxa, including fossil eggs.
Collapse
Affiliation(s)
- Lucas J. Legendre
- Department of Geological SciencesUniversity of Texas at AustinAustinTexasUSA
| | - Seung Choi
- Department of Earth SciencesMontana State UniversityBozemanMontanaUSA
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
| | - Julia A. Clarke
- Department of Geological SciencesUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
6
|
Chinsamy A, Handley WD, Worthy TH. Osteohistology of
Dromornis stirtoni
(Aves: Dromornithidae) and the biological implications of the bone histology of the Australian mihirung birds. Anat Rec (Hoboken) 2022. [DOI: 10.1002/ar.25047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anusuya Chinsamy
- Department of Biological Sciences University of Cape Town Rondebosch South Africa
| | - Warren D. Handley
- Palaeontology Group, College of Science and Engineering Flinders University Adelaide South Australia Australia
| | - Trevor H. Worthy
- Palaeontology Group, College of Science and Engineering Flinders University Adelaide South Australia Australia
| |
Collapse
|
7
|
Kulshreshtha G, D’Alba L, Dunn IC, Rehault-Godbert S, Rodriguez-Navarro AB, Hincke MT. Properties, Genetics and Innate Immune Function of the Cuticle in Egg-Laying Species. Front Immunol 2022; 13:838525. [PMID: 35281050 PMCID: PMC8914949 DOI: 10.3389/fimmu.2022.838525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Cleidoic eggs possess very efficient and orchestrated systems to protect the embryo from external microbes until hatch. The cuticle is a proteinaceous layer on the shell surface in many bird and some reptile species. An intact cuticle forms a pore plug to occlude respiratory pores and is an effective physical and chemical barrier against microbial penetration. The interior of the egg is assumed to be normally sterile, while the outer eggshell cuticle hosts microbes. The diversity of the eggshell microbiome is derived from both maternal microbiota and those of the nesting environment. The surface characteristics of the egg, outer moisture layer and the presence of antimicrobial molecules composing the cuticle dictate constituents of the microbial communities on the eggshell surface. The avian cuticle affects eggshell wettability, water vapor conductance and regulates ultraviolet reflectance in various ground-nesting species; moreover, its composition, thickness and degree of coverage are dependent on species, hen age, and physiological stressors. Studies in domestic avian species have demonstrated that changes in the cuticle affect the food safety of eggs with respect to the risk of contamination by bacterial pathogens such as Salmonella and Escherichia coli. Moreover, preventing contamination of internal egg components is crucial to optimize hatching success in bird species. In chickens there is moderate heritability (38%) of cuticle deposition with a potential for genetic improvement. However, much less is known about other bird or reptile cuticles. This review synthesizes current knowledge of eggshell cuticle and provides insight into its evolution in the clade reptilia. The origin, composition and regulation of the eggshell microbiome and the potential function of the cuticle as the first barrier of egg defense are discussed in detail. We evaluate how changes in the cuticle affect the food safety of table eggs and vertical transmission of pathogens in the production chain with respect to the risk of contamination. Thus, this review provides insight into the physiological and microbiological characteristics of eggshell cuticle in relation to its protective function (innate immunity) in egg-laying birds and reptiles.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Liliana D’Alba
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, Netherlands
| | - Ian C. Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Maxwell T. Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Svobodová J, Kreisinger J, Gvoždíková Javůrková V. Temperature-induced changes in egg white antimicrobial concentrations during pre-incubation do not influence bacterial trans-shell penetration but do affect hatchling phenotype in Mallards. PeerJ 2021; 9:e12401. [PMID: 34824913 PMCID: PMC8590799 DOI: 10.7717/peerj.12401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Microbiome formation and assemblage are essential processes influencing proper embryonal and early-life development in neonates. In birds, transmission of microbes from the outer environment into the egg’s interior has been found to shape embryo viability and hatchling phenotype. However, microbial transmission may be affected by egg-white antimicrobial proteins (AMPs), whose concentration and antimicrobial action are temperature-modulated. As both partial incubation and clutch covering with nest-lining feathers during the pre-incubation period can significantly alter temperature conditions acting on eggs, we experimentally investigated the effects of these behavioural mechanisms on concentrations of both the primary and most abundant egg-white AMPs (lysozyme and avidin) using mallard (Anas platyrhychos) eggs. In addition, we assessed whether concentrations of egg-white AMPs altered the probability and intensity of bacterial trans-shell penetration, thereby affecting hatchling morphological traits in vivo. We observed higher concentrations of lysozyme in partially incubated eggs. Clutch covering with nest-lining feathers had no effect on egg-white AMP concentration and we observed no association between concentration of egg-white lysozyme and avidin with either the probability or intensity of bacterial trans-shell penetration. The higher egg-white lysozyme concentration was associated with decreased scaled body mass index of hatchlings. These outcomes demonstrate that incubation prior to clutch completion in precocial birds can alter concentrations of particular egg-white AMPs, though with no effect on bacterial transmission into the egg in vivo. Furthermore, a higher egg white lysozyme concentration compromised hatchling body condition, suggesting a potential growth-regulating role of lysozyme during embryogenesis in precocial birds.
Collapse
Affiliation(s)
- Jana Svobodová
- Faculty of Environmental Sciences, Department of Ecology, Czech University of Life Sciences, Prague, Suchdol, Czech Republic
| | - Jakub Kreisinger
- Faculty of Science, Department of Zoology, Charles University Prague, Prague, Czech Republic
| | - Veronika Gvoždíková Javůrková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Czech University of Life Sciences, Prague, Suchdol, Czech Republic
| |
Collapse
|
9
|
Oser SE, Chin K, Sertich JJW, Varricchio DJ, Choi S, Rifkin J. Tiny, ornamented eggs and eggshell from the Upper Cretaceous of Utah represent a new ootaxon with theropod affinities. Sci Rep 2021; 11:10021. [PMID: 33976315 PMCID: PMC8113451 DOI: 10.1038/s41598-021-89472-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
A new Cretaceous ootaxon (eggshell type) from the Kaiparowits Formation of Grand Staircase-Escalante National Monument is among a growing number of very small eggs described from the Mesozoic. Analyses of two partial eggs (~ 17.7 mm in diameter) and 29 eggshell fragments reveal that this new ootaxon exhibits nodose ornamentation with distinctive branching pore canals that open atop the nodes. Its two-layered microstructure consists of a mammillary layer and a continuous layer with rugged grain boundaries between calcite grains. Although the exact identity of the egg producer is unknown, the eggshell microstructure and small size is consistent with a small-bodied avian or non-avian theropod. The specific combination of small egg size, branching pores, two-layered microstructure, and dispersituberculate ornamentation preserved in this new ootaxon is unique among theropod eggs. This underscores that both eggshell and skeletal fossils of Cretaceous theropods can display a mosaic of transitional morphological and behavioural features characteristic of both avian and non-avian taxa. As such, this new ootaxon increases the diversity of Cretaceous eggs and informs our understanding of the evolution of theropod eggshell microstructure and morphology.
Collapse
Affiliation(s)
- Sara E Oser
- Museum of Natural History, University of Colorado, Boulder, CO, 80309, USA.
| | - Karen Chin
- Museum of Natural History, University of Colorado, Boulder, CO, 80309, USA.,Department of Geological Sciences, University of Colorado, Boulder, CO, 80309, USA
| | - Joseph J W Sertich
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, CO, 80205, USA
| | - David J Varricchio
- Department of Earth Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Seung Choi
- Department of Earth Sciences, Montana State University, Bozeman, MT, 59717, USA
| | | |
Collapse
|
10
|
Vieco‐Galvez D, Castro I, Morel PCH, Chua WH, Loh M. The eggshell structure in apteryx; form, function, and adaptation. Ecol Evol 2021; 11:3184-3202. [PMID: 33841776 PMCID: PMC8019059 DOI: 10.1002/ece3.7266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 11/22/2022] Open
Abstract
Apteryx is a genus of flightless birds endemic to New Zealand known to lay very large eggs in proportion to body weight. The eggshell of Apteryx is unusually thin and less porous than allometrically expected possibly as a compensation for a very long incubation period. Past studies have been carried out on Apteryx australis, a species which once comprised all kiwi with brown plumage, now separated into three distinct species. These species use different habitats and live at different latitudes and altitudes, therefore generating a need to revise our knowledge of the attributes of their eggshells. In this study, we measured the physical characteristics and water conductance on eggshell fragments of these three species and Great-spotted Kiwi and relate them to the environmental conditions of their respective environments; we also measured the water vapor conductance of Brown Kiwi eggs of late stages of incubation. We found that several trade-offs exist between incubation behavior, environmental conditions, and eggshell structure. We found differences between species in eggshell water vapor conductance seemingly related to altitude; Brown Kiwi and Rowi generally inhabiting lower altitudes had the highest conductance and Tokoeka, generally living in montane environments, the lowest. This is achieved by an increased eggshell thickness rather than a pore area reduction. Finally, the water vapor conductance late in incubation was 58% higher than infertile unincubated eggs, suggesting a drastic increase in conductance throughout the long incubation period. Using the values previously reported, we calculated the embryonic eggshell thinning to be 32.5% at the equatorial region of the eggshell. We describe several new features, such as triangular mineral particles in the cuticle, reported for the extinct Trigonoolithus amoei, and confirmed the existence of plugged pores. We suggest that these structures provide microbial protection needed by a burrow nesting species with a long incubation period.
Collapse
Affiliation(s)
- David Vieco‐Galvez
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Isabel Castro
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Patrick C. H. Morel
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Wei Hang Chua
- School of Health SciencesMassey UniversityPalmerston NorthNew Zealand
| | | |
Collapse
|
11
|
Svobodová J, Šmídová L, Javůrková VG. Different incubation patterns affect selective antimicrobial properties of the egg interior: experimental evidence from eggs of precocial and altricial birds. ACTA ACUST UNITED AC 2019; 222:jeb.201442. [PMID: 30814292 DOI: 10.1242/jeb.201442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
Avian eggs contend with omnipresent microorganisms entering the egg interior, where they affect embryo viability and hatchling phenotype. The incubation behaviour and deposition of egg white antimicrobial proteins (AMPs) vary highly across the avian altricial-precocial spectrum. Experimental evidence of how these alterations in avian reproductive strategies affect the antimicrobial properties of the precocial and altricial egg interior is lacking, however. Here, we tested the egg white antimicrobial activity in eggs of two representative model species, from each end of the avian altricial-precocial spectrum, against potentially pathogenic and beneficial probiotic microorganisms. Eggs were experimentally treated to mimic un-incubated eggs in the nest, partial incubation during the egg-laying period, the onset of full incubation and the increased deposition of two main egg white AMPs, lysozyme and ovotransferrin. We moreover assessed to what extent egg antimicrobial components, egg white pH and AMP concentrations varied as a result of different incubation patterns. Fully incubated precocial and altricial eggs decreased their antimicrobial activity against a potentially pathogenic microorganism, whereas partial incubation significantly enhanced the persistence of a beneficial probiotic microorganism in precocial eggs. These effects were most probably conditioned by temperature-dependent alterations in egg white pH and AMP concentrations. While lysozyme concentration and pH decreased in fully incubated precocial but not altricial eggs, egg white ovotransferrin increased along with the intensity of incubation in both precocial and altricial eggs. This study is the first to experimentally demonstrate that different incubation patterns may have selective antimicrobial potential mediated by species-specific effects on antimicrobial components in the egg white.
Collapse
Affiliation(s)
- Jana Svobodová
- Czech University of Life Sciences, Faculty of Environmental Sciences, Department of Ecology, Kamýcká 1176, 165 21 Prague 6, Czech Republic
| | - Lucie Šmídová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Veronika Gvoždíková Javůrková
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Kamýcká 957, 165 21 Prague 6, Czech Republic
| |
Collapse
|
12
|
Hechenleitner EM, Taborda JRA, Fiorelli LE, Grellet-Tinner G, Nuñez-Campero SR. Biomechanical evidence suggests extensive eggshell thinning during incubation in the Sanagasta titanosaur dinosaurs. PeerJ 2018; 6:e4971. [PMID: 29910984 PMCID: PMC6003389 DOI: 10.7717/peerj.4971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
Abstract
The reproduction of titanosaur dinosaurs is still a complex and debated topic. Their Late Cretaceous nesting sites are distributed worldwide and their eggs display substantial morphological variations according to the parent species. In contrast to the typical 1.3–2.0 mm thick shells common to eggs of most titanosaur species (e.g., those that nested in Auca Mahuevo, Tama, Toteşti or Boseong), the Cretaceous Sanagasta eggs of Argentina display an unusual shell thickness of up to 7.9 mm. Their oviposition was synchronous with a palaeogeothermal process, leading to the hypothesis that their extra thick eggshell was an adaptation to this particular nesting environment. Although this hypothesis has already been supported indirectly through several investigations, the mechanical implications of developing such thick shells and how this might have affected the success of hatching remains untested. Finite element analyses estimate that the breaking point of the thick-shelled Sanagasta eggs is 14–45 times higher than for other smaller and equally sized titanosaur eggs. The considerable energetic disadvantage for piping through these thick eggshells suggests that their dissolution during incubation would have been paramount for a successful hatching.
Collapse
Affiliation(s)
- E Martín Hechenleitner
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina
| | - Jeremías R A Taborda
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, CONICET, FCEFyN), Córdoba, Argentina
| | - Lucas E Fiorelli
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina
| | - Gerald Grellet-Tinner
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina.,The Orcas Island Historical Museums, Eastsound, WA, USA
| | - Segundo R Nuñez-Campero
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina
| |
Collapse
|