1
|
Morè L, Privitera L, Cooper DD, Tsogka M, Arthur JSC, Frenguelli BG. MSK1 is required for the beneficial synaptic and cognitive effects of enriched experience across the lifespan. Aging (Albany NY) 2023; 15:6031-6072. [PMID: 37432063 PMCID: PMC10373962 DOI: 10.18632/aging.204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023]
Abstract
Positive experiences, such as social interaction, cognitive training and physical exercise, have been shown to ameliorate some of the harms to cognition associated with ageing. Animal models of positive interventions, commonly known as environmental enrichment, strongly influence neuronal morphology and synaptic function and enhance cognitive performance. While the profound structural and functional benefits of enrichment have been appreciated for decades, little is known as to how the environment influences neurons to respond and adapt to these positive sensory experiences. We show that adult and aged male wild-type mice that underwent a 10-week environmental enrichment protocol demonstrated improved performance in a variety of behavioural tasks, including those testing spatial working and spatial reference memory, and an enhancement in hippocampal LTP. Aged animals in particular benefitted from enrichment, performing spatial memory tasks at levels similar to healthy adult mice. Many of these benefits, including in gene expression, were absent in mice with a mutation in an enzyme, MSK1, which is activated by BDNF, a growth factor implicated in rodent and human cognition. We conclude that enrichment is beneficial across the lifespan and that MSK1 is required for the full extent of these experience-induced improvements of cognitive abilities, synaptic plasticity and gene expression.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel D. Cooper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Marianthi Tsogka
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
2
|
Ji CH, Gu JH, Liu Y, Tang WQ, Guan W, Huang J, Chen YM, Xu DW, Jiang B. Hippocampal MSK1 regulates the behavioral and biological responses of mice to chronic social defeat stress: Involving of the BDNF-CREB signaling and neurogenesis. Biochem Pharmacol 2022; 195:114836. [PMID: 34774532 DOI: 10.1016/j.bcp.2021.114836] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022]
Abstract
Depression is one of the most common psychiatric diseases in the 21st century, while its pathogenesis is not yet fully understood. Currently, besides to the monoaminergic system, the brain-derived neurotrophic factor (BDNF)-cAMP response element-binding protein (CREB) signaling is one of the most attractive signaling pathways for treating depression. Mitogen and stress-activated kinase (MSK) 1 and 2 are nuclear proteins activated downstream of the ERK1/2 or p38 MAPK pathways, and it has been demonstrated that MSKs are involved in the BDNF-CREB signaling. Here we assumed that MSKs may play a role in depression, and various methods including the chronic social defeat stress (CSDS) model of depression, western blotting, immunofluorescence and virus-mediated gene transfer were used together. It was found that CSDS fully enhanced the expression of both phosphorylated MSK1 and total MSK1 in the hippocampus but not the medial prefrontal cortex (mPFC). CSDS did not influence the expression of phosphorylated MSK2 and total MSK2 in the two brain regions. Genetic over-expression of hippocampal MSK1 fully prevented not only the CSDS-induced depressive-like behaviors but also the CSDS-induced dysfunction in the hippocampal BDNF-CREB signaling and neurogenesis in mice, while genetic knockdown of hippocampal MSK1 aggravated the CSDS-induced depressive-like symptomatology in mice. Our results collectively suggest that although CSDS evidently enhances the activity of hippocampal MSK1, it is not a contributor to the CSDS-induced dysfunction in the brain but a defensive feedback regulator which protects against CSDS. Therefore, hippocampal MSK1 participates in the pathogenesis of depression and is a feasible and potential antidepressant target.
Collapse
Affiliation(s)
- Chun-Hui Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jiang-Hong Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yue Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wen-Qian Tang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Da-Wei Xu
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu, China.
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
3
|
Cooper DD, Frenguelli BG. The influence of sensory experience on the glutamatergic synapse. Neuropharmacology 2021; 193:108620. [PMID: 34048870 DOI: 10.1016/j.neuropharm.2021.108620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
The ability of glutamatergic synaptic strength to change in response to prevailing neuronal activity is believed to underlie the capacity of animals, including humans, to learn from experience. This learning better equips animals to safely navigate challenging and potentially harmful environments, while reinforcing behaviours that are conducive to survival. Early descriptions of the influence of experience on behaviour were provided by Donald Hebb who showed that an enriched environment improved performance of rats in a variety of behavioural tasks, challenging the widely-held view at the time that psychological development and intelligence were largely predetermined through genetic inheritance. Subsequent studies in a variety of species provided detailed cellular and molecular insights into the neurobiological adaptations associated with enrichment and its counterparts, isolation and deprivation. Here we review those experience-dependent changes that occur at the glutamatergic synapse, and which likely underlie the enhanced cognition associated with enrichment. We focus on the importance of signalling initiated by the release of BDNF and a prime downstream effector, MSK1, in orchestrating the many structural and functional neuronal adaptations associated with enrichment. In particular we discuss the MSK1-dependent expansion of the dynamic range of the glutamatergic synapse, which may allow enhanced information storage or processing, and the establishment of a genomic homeostasis that may both stabilise the enriched brain, and may make it better able to respond to novel experiences.
Collapse
Affiliation(s)
- Daniel D Cooper
- School of Life Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
4
|
Morice E, Enderlin V, Gautron S, Laroche S. Contrasting Functions of Mitogen- and Stress-activated Protein Kinases 1 and 2 in Recognition Memory and In Vivo Hippocampal Synaptic Transmission. Neuroscience 2021; 463:70-85. [PMID: 33722673 DOI: 10.1016/j.neuroscience.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
The mitogen-activated protein kinases (MAPK) are major signaling components of intracellular pathways required for memory consolidation. Mitogen- and stress-activated protein kinases 1 and 2 (MSK1 and MSK2) mediate signal transduction downstream of MAPK. MSKs are activated by Extracellular-signal Regulated Kinase 1/2 (ERK1/2) and p38 MAPK. In turn, they can activate cyclic AMP-response-element-binding protein (CREB), thereby modulating the expression of immediate early genes crucial for the formation of long-term memories. While MSK1 has been previously implicated in certain forms of learning and memory, little is known concerning MSK2. Our goal was to explore the respective contribution of MSK1 and MSK2 in hippocampal synaptic transmission and plasticity and hippocampal-dependent recognition memory. In Msk1- and Msk2-knockout mice, we evaluated object and object-place recognition memory, basal synaptic transmission, paired-pulse facilitation (PPF) and inhibition (PPI), and the capacity to induce and sustain long-term potentiation (LTP) in vivo. We also assessed the level of two proteins downstream in the MAPK/ERK1/2 pathway crucial for long-term memory, CREB and the immediate early gene (IEG) Early growth response 1 (EGR1). Loss of Msk1, but not of Msk2, affected excitatory synaptic transmission at perforant path-to-dentate granule cell synapses, altered short-term presynaptic plasticity, impaired selectively long-term spatial recognition memory, and decreased basal levels of CREB and its activated form. LTP in vivo and LTP-induced CREB phosphorylation and EGR1 expression were unchanged after Msk1 or Msk2 deletion. Our findings demonstrate a dissimilar contribution of MSKs proteins in cognitive processes and suggest that Msk1 loss-of-function only has a deleterious impact on neuronal activity and hippocampal-dependent memory consolidation.
Collapse
Affiliation(s)
- Elise Morice
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France; University Paris-Saclay, CNRS, Paris-Saclay Neuroscience Institute, 91405 Orsay, France.
| | - Valérie Enderlin
- University Paris-Saclay, CNRS, Paris-Saclay Neuroscience Institute, 91405 Orsay, France.
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France.
| | - Serge Laroche
- University Paris-Saclay, CNRS, Paris-Saclay Neuroscience Institute, 91405 Orsay, France.
| |
Collapse
|
5
|
Olateju OI, Morè L, Arthur JSC, Frenguelli BG. Mitogen and Stress-activated Protein Kinase 1 Negatively Regulates Hippocampal Neurogenesis. Neuroscience 2020; 452:228-234. [PMID: 33246062 PMCID: PMC7810160 DOI: 10.1016/j.neuroscience.2020.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
Neurogenesis in the subgranular zone (SGZ) of the adult hippocampus can be stimulated by a variety of means, including via exposure of experimental animals to an enriched environment that provides additional sensory, social, and motor stimulation. Tangible health and cognitive benefits accrue in enriched animals, including the amelioration of signs modelling psychiatric, neurological and neurodegenerative conditions that affect humans, which may in part be due to enhanced production of neurons. A key factor in the neuronal response to enrichment is the release of brain-derived neurotrophic factor (BDNF) and the activation of the Mitogen-Activated Protein Kinase (MAPK) cascade, which can lead to the stimulation of neurogenesis. Mitogen- and Stress-Activated protein Kinase 1 (MSK1) is a nuclear enzyme downstream of BDNF and MAPK that regulates transcription. MSK1 has previously been implicated in both basal and stimulated neurogenesis on the basis of studies with mice lacking MSK1 protein. In the present study, using mice in which only the kinase activity of MSK1 is lacking, we show that the rate of cellular proliferation in the SGZ (Ki-67 staining) is unaffected by the MSK1 kinase-dead (KD) mutation, and no different from controls levels after five weeks of enrichment. However, compared to wild-type mice, the number of doublecortin (DCX)-positive cells was greater in both standard-housed and enriched MSK1 KD mice. These observations suggest that, while MSK1 does not influence the basal rate of proliferation of neuronal precursors, MSK1 negatively regulates the number of cells destined to become neurons, potentially as a homeostatic control on the number of new neurons integrating into the dentate gyrus.
Collapse
Affiliation(s)
- Oladiran I Olateju
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Lorenzo Morè
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - J Simon C Arthur
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | |
Collapse
|
6
|
Experience Recruits MSK1 to Expand the Dynamic Range of Synapses and Enhance Cognition. J Neurosci 2020; 40:4644-4660. [PMID: 32376781 PMCID: PMC7294801 DOI: 10.1523/jneurosci.2765-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
Experience powerfully influences neuronal function and cognitive performance, but the cellular and molecular events underlying the experience-dependent enhancement of mental ability have remained elusive. In particular, the mechanisms that couple the external environment to the genomic changes underpinning this improvement are unknown. To address this, we have used male mice harboring an inactivating mutation of mitogen- and stress-activated protein kinase 1 (MSK1), a brain-derived neurotrophic factor (BDNF)-activated enzyme downstream of the mitogen-activated protein kinase (MAPK) pathway. We show that MSK1 is required for the full extent of experience-induced improvement of spatial memory, for the expansion of the dynamic range of synapses, exemplified by the enhancement of hippocampal long-term potentiation (LTP) and long-term depression (LTD), and for the regulation of the majority of genes influenced by enrichment. In addition, and unexpectedly, we show that experience is associated with an MSK1-dependent downregulation of key MAPK and plasticity-related genes, notably of EGR1/Zif268 and Arc/Arg3.1, suggesting the establishment of a novel genomic landscape adapted to experience. By coupling experience to homeostatic changes in gene expression MSK1, represents a prime mechanism through which the external environment has an enduring influence on gene expression, synaptic function, and cognition. SIGNIFICANCE STATEMENT Our everyday experiences strongly influence the structure and function of the brain. Positive experiences encourage the growth and development of the brain and support enhanced learning and memory and resistance to mood disorders such as anxiety. While this has been known for many years, how this occurs is not clear. Here, we show that many of the positive aspects of experience depend on an enzyme called mitogen- and stress-activated protein kinase 1 (MSK1). Using male mice with a mutation in MSK1, we show that MSK1 is necessary for the majority of gene expression changes associated with experience, extending the range over which the communication between neurons occurs, and for both the persistence of memory and the ability to learn new task rules.
Collapse
|
7
|
Zhong Z, Zhou Y, Feng S, Huang Y, Chen X. [Effect of lentivirus-mediated small interfering RNA on mitogen- and stress-activated protein kinase 1 in spinal cord injury of rats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 32:941-950. [PMID: 30129321 DOI: 10.7507/1002-1892.201801093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To investigate the expression changes and the repair effect of mitogen and stress- activated protein kinase 1 (MSK1) on spinal cord injury (SCI) in rats. Methods One hundred and twenty male Sprague Dawley (SD) rats (weighing 220-250 g) were used for the study, 70 of them were randomly divided into sham-operation group and SCI group ( n=35), the rats in SCI group were given SCI according to Allen's method, and the sham-operation group only opened the lamina without injuring the spinal cord; spinal cord tissue was collected at 8 hours, 12 hours, 1 day, 2 days, 3 days, 5 days, and 7 days after invasive treatment, each group of 5 rats was used to detect the expression of MSK1 and proliferating cell nuclear antigen (PCNA) by Western blot assay. Another 20 SD rats were grouped by the same method as above ( n=10). In these rats, a negative control lentiviral LV3NC dilution was injected at a depth of approximately 0.8 mm at the spinal cord T 10 level. The results of transfection at 1, 3, 5, 7, and 14 days after injection were observed under an inverted fluorescence microscope to determine the optimal transfection time of the virus. The other 30 SD rats were randomly divided into group A with only SCI, group B with a negative control lentiviral LV3NC injected after SCI, and group C with MSK1 small interfering RNA (siRNA) lentivirus injected after SCI, with 10 rats each group. The Basso, Beatlie, Bresnahan (BBB) score of hind limbs was measured at 1, 3, 5, 7, and 14 days after treatment; spinal cord tissue collected at the optimal time point for lentivirus transfection was detected the expression changes of MSK1 and PCNA by Western blot and the localization by immunofluorescence staining of MSK1 and PCNA proteins. Results Western blot assay showed that there was no significant changes in the expression of MSK1 and PCNA at each time points in the sham-operation group. In the SCI group, the expression of MSK1 protein was gradually decreased from 8 hours after injury to the lowest level at 3 days after injury, and then gradually increased; the expression change of PCNA protein was opposite to MSK1. The expression of MSK1 in SCI group was significantly lower than that in the sham-operation group at 1, 2, 3, and 5 days after injury ( P<0.05), and the expression of PCNA protein of SCI group was significantly higher than that of the sham-operation group at 8 hours and 1, 2, 3, 5, and 7 days after injury ( P<0.05). The fluorescence expression of both the SCI group and the sham-operation group has be found and peaked at 7 days. There was a positive correlation between fluorescence intensity and time in 7 days after transfection. With the prolongation of postoperative time, the BBB scores of groups A, B, and C showed a gradually increasing trend. The BBB score of group C was significantly lower than those of groups A and B at 5, 7, and 14 days after treatment ( P<0.05). After transfection for 7 days, Western blot results showed that the relative expression of MSK1 protein in group C was significantly lower than that in groups A and B ( P<0.05); and the relative expression of PCNA protein was significantly higher than that in groups A and B ( P<0.05). Immunofluorescence staining showed that MSK1 was expressed in the nuclei of the spinal cord and colocalized with green fluorescent protein, neuronal nuclei, and glial fibrillary acidic protein (GFAP). The relative expression area of MSK1 positive cells in group C was significantly higher than that in group B ( P<0.05), and the relative expression areas of PCNA and GFAP positive cells were significantly lower than those in group B ( P<0.05). Conclusion Lentivirus-mediated MSK1 siRNA can effectively silence the expression of MSK1 in rat spinal cord tissue. MSK1 may play a critical role in the repair of SCI in rats by regulating the proliferation of glial cells.
Collapse
Affiliation(s)
- Zexiang Zhong
- Department of Spine Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou Fujian, 350005, P.R.China
| | - Yinan Zhou
- Department of Spine Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou Fujian, 350005, P.R.China
| | - Sisi Feng
- Department of Pathology and Pathophysiology, Fujian Medical University, Fuzhou Fujian, 350005, P.R.China
| | - Yu Huang
- Department of Spine Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou Fujian, 350005, P.R.China
| | - Xuanwei Chen
- Department of Spine Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou Fujian, 350005,
| |
Collapse
|
8
|
Choi YS, Horning P, Aten S, Karelina K, Alzate-Correa D, Arthur JSC, Hoyt KR, Obrietan K. Mitogen- and Stress-Activated Protein Kinase 1 Regulates Status Epilepticus-Evoked Cell Death in the Hippocampus. ASN Neuro 2018; 9:1759091417726607. [PMID: 28870089 PMCID: PMC5588809 DOI: 10.1177/1759091417726607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling has been implicated in a wide range of neuronal processes, including development, plasticity, and viability. One of the principal downstream targets of both the extracellular signal-regulated kinase/MAPK pathway and the p38 MAPK pathway is Mitogen- and Stress-activated protein Kinase 1 (MSK1). Here, we sought to understand the role that MSK1 plays in neuroprotection against excitotoxic stimulation in the hippocampus. To this end, we utilized immunohistochemical labeling, a MSK1 null mouse line, cell viability assays, and array-based profiling approaches. Initially, we show that MSK1 is broadly expressed within the major neuronal cell layers of the hippocampus and that status epilepticus drives acute induction of MSK1 activation. In response to the status epilepticus paradigm, MSK1 KO mice exhibited a striking increase in vulnerability to pilocarpine-evoked cell death within the CA1 and CA3 cell layers. Further, cultured MSK1 null neurons exhibited a heighted level of N-methyl-D-aspartate-evoked excitotoxicity relative to wild-type neurons, as assessed using the lactate dehydrogenase assay. Given these findings, we examined the hippocampal transcriptional profile of MSK1 null mice. Affymetrix array profiling revealed that MSK1 deletion led to the significant (>1.25-fold) downregulation of 130 genes and an upregulation of 145 genes. Notably, functional analysis indicated that a subset of these genes contribute to neuroprotective signaling networks. Together, these data provide important new insights into the mechanism by which the MAPK/MSK1 signaling cassette confers neuroprotection against excitotoxic insults. Approaches designed to upregulate or mimic the functional effects of MSK1 may prove beneficial against an array of degenerative processes resulting from excitotoxic insults.
Collapse
Affiliation(s)
- Yun-Sik Choi
- 1 Department of Pharmaceutical Science and Technology, Catholic University of Daegu, Gyeongbuk, Republic of Korea
| | - Paul Horning
- 2 Department of Neuroscience, 2647 Ohio State University , Columbus, OH, USA
| | - Sydney Aten
- 2 Department of Neuroscience, 2647 Ohio State University , Columbus, OH, USA
| | - Kate Karelina
- 2 Department of Neuroscience, 2647 Ohio State University , Columbus, OH, USA
| | | | - J Simon C Arthur
- 4 College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Kari R Hoyt
- 3 Division of Pharmacology, 2647 Ohio State University , Columbus, OH, USA
| | - Karl Obrietan
- 2 Department of Neuroscience, 2647 Ohio State University , Columbus, OH, USA
| |
Collapse
|
9
|
Hunter CJ, Remenyi J, Correa SA, Privitera L, Reyskens KMSE, Martin KJ, Toth R, Frenguelli BG, Arthur JSC. MSK1 regulates transcriptional induction of Arc/Arg3.1 in response to neurotrophins. FEBS Open Bio 2017; 7:821-834. [PMID: 28593137 PMCID: PMC5458472 DOI: 10.1002/2211-5463.12232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 12/29/2022] Open
Abstract
The immediate early gene activity‐regulated cytoskeletal protein (Arc)/Arg3.1 and the neurotrophin brain‐derived neurotrophic factor (BDNF) play important roles in synaptic plasticity and learning and memory in the mammalian brain. However, the mechanisms by which BDNF regulates the expression of Arc/Arg3.1 are unclear. In this study, we show that BDNF acts via the ERK1/2 pathway to activate the nuclear kinase mitogen‐ and stress‐activated protein kinase 1 (MSK1). MSK1 then induces Arc/Arg3.1 expression via the phosphorylation of histone H3 at the Arc/Arg3.1 promoter. MSK1 can also phosphorylate the transcription factor cyclic‐AMP response element‐binding protein (CREB) on Ser133. However, this is not required for BDNF‐induced Arc.Arg3.1 transcription as a Ser133Ala knockin mutation had no effect on Arc/Arg3.1 induction. In parallel, ERK1/2 directly activates Arc/Arg3.1 mRNA transcription via at least one serum response element on the promoter, which bind a complex of the Serum Response Factor (SRF) and a Ternary Complex Factor (TCF).
Collapse
Affiliation(s)
- Chris J Hunter
- MRC Protein Phosphorylation Unit College of Life Sciences Sir James Black Centre University of Dundee UK
| | - Judit Remenyi
- Wellcome Trust Centre for Gene Regulation and Expression Wellcome Trust Building College of Life Sciences University of Dundee UK
| | - Sonia A Correa
- Bradford School of Pharmacy Faculty of Life Sciences University of Bradford UK
| | | | - Kathleen M S E Reyskens
- Division of Cell Signalling and Immunology Wellcome Trust Building College of Life Sciences University of Dundee UK
| | - Kirsty J Martin
- MRC Protein Phosphorylation Unit College of Life Sciences Sir James Black Centre University of Dundee UK
| | - Rachel Toth
- MRC Protein Phosphorylation Unit College of Life Sciences Sir James Black Centre University of Dundee UK
| | | | - J Simon C Arthur
- Division of Cell Signalling and Immunology Wellcome Trust Building College of Life Sciences University of Dundee UK
| |
Collapse
|
10
|
The Kinase Function of MSK1 Regulates BDNF Signaling to CREB and Basal Synaptic Transmission, But Is Not Required for Hippocampal Long-Term Potentiation or Spatial Memory. eNeuro 2017; 4:eN-NWR-0212-16. [PMID: 28275711 PMCID: PMC5318545 DOI: 10.1523/eneuro.0212-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/26/2022] Open
Abstract
The later stages of long-term potentiation (LTP) in vitro and spatial memory in vivo are believed to depend upon gene transcription. Accordingly, considerable attempts have been made to identify both the mechanisms by which transcription is regulated and indeed the gene products themselves. Previous studies have shown that deletion of one regulator of transcription, the mitogen- and stress-activated kinase 1 (MSK1), causes an impairment of spatial memory. Given the ability of MSK1 to regulate gene expression via the phosphorylation of cAMP response element binding protein (CREB) at serine 133 (S133), MSK1 is a plausible candidate as a prime regulator of transcription underpinning synaptic plasticity and learning and memory. Indeed, prior work has revealed the necessity for MSK1 in homeostatic and experience-dependent synaptic plasticity. However, using a knock-in kinase-dead mouse mutant of MSK1, the current study demonstrates that, while the kinase function of MSK1 is important in regulating the phosphorylation of CREB at S133 and basal synaptic transmission in hippocampal area CA1, it is not required for metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD), two forms of LTP or several forms of spatial learning in the watermaze. These data indicate that other functions of MSK1, such as a structural role for the whole enzyme, may explain previous observations of a role for MSK1 in learning and memory.
Collapse
|
11
|
Reyskens KMSE, Arthur JSC. Emerging Roles of the Mitogen and Stress Activated Kinases MSK1 and MSK2. Front Cell Dev Biol 2016; 4:56. [PMID: 27376065 PMCID: PMC4901046 DOI: 10.3389/fcell.2016.00056] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/30/2016] [Indexed: 01/17/2023] Open
Abstract
Mitogen- and stress-activated kinases (MSK) 1 and 2 are nuclear proteins activated downstream of the ERK1/2 or p38 MAPK pathways. MSKs phosphorylate multiple substrates, including CREB and Histone H3, and their major role is the regulation of specific subsets of Immediate Early genes (IEG). While MSKs are expressed in multiple tissues, their levels are high in immune and neuronal cells and it is in these systems most is known about their function. In immunity, MSKs have predominantly anti-inflammatory roles and help regulate production of the anti-inflammatory cytokine IL-10. In the CNS they are implicated in neuronal proliferation and synaptic plasticity. In this review we will focus on recent advances in understanding the roles of MSKs in the innate immune system and neuronal function.
Collapse
Affiliation(s)
- Kathleen M S E Reyskens
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee Dundee, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee Dundee, UK
| |
Collapse
|
12
|
Effects of Electromagnetic Radiation from Smartphones on Learning Ability and Hippocampal Progenitor Cell Proliferation in Mice. Osong Public Health Res Perspect 2015; 7:12-7. [PMID: 26981337 PMCID: PMC4776265 DOI: 10.1016/j.phrp.2015.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/17/2015] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Nonionizing radiation is emitted from electronic devices, such as smartphones. In this study, we intended to elucidate the effect of electromagnetic radiation from smartphones on spatial working memory and progenitor cell proliferation in the hippocampus. METHODS Both male and female mice were randomly separated into two groups (radiated and control) and the radiated group was exposed to electromagnetic radiation for 9 weeks and 11 weeks for male and female mice, respectively. Spatial working memory was examined with a Y maze, and proliferation of hippocampal progenitor cells were examined by 5-bromo-2'-deoxyuridine administration and immunohistochemical detection. RESULTS When spatial working memory on a Y maze was examined in the 9(th) week, there was no significant difference in the spontaneous alternation score on the Y maze between the two groups. In addition, there was no significant difference in hippocampal progenitor cell proliferation. However, immunoreactivity to glial fibrillary acidic protein was increased in exposed animals. Next, to test the effect of recovery following chronic radiation exposure, the remaining female mice were further exposed to electromagnetic radiation for 2 more weeks (total 11 weeks), and spontaneous alternation was tested 4 weeks later. In this experiment, although there was no significant difference in the spontaneous alternation scores, the number of arm entry was significantly increased. CONCLUSION These data indicate that although chronic electromagnetic radiation does not affect spatial working memory and hippocampal progenitor cell proliferation it can mediate astrocyte activation in the hippocampus and delayed hyperactivity-like behavior.
Collapse
|
13
|
Komuro Y, Xu G, Bhaskar K, Lamb BT. Human tau expression reduces adult neurogenesis in a mouse model of tauopathy. Neurobiol Aging 2015; 36:2034-42. [PMID: 25863528 DOI: 10.1016/j.neurobiolaging.2015.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 02/24/2015] [Accepted: 03/03/2015] [Indexed: 11/29/2022]
Abstract
Accumulation of hyperphosphorylated and aggregated microtubule-associated protein tau (MAPT) is a central feature of a class of neurodegenerative diseases termed tauopathies. Notably, there is increasing evidence that tauopathies, including Alzheimer's disease, are also characterized by a reduction in neurogenesis, the birth of adult neurons. However, the exact relationship between hyperphosphorylation and aggregation of MAPT and neurogenic deficits remains unclear, including whether this is an early- or late-stage disease marker. In the present study, we used the genomic-based hTau mouse model of tauopathy to examine the temporal and spatial regulation of adult neurogenesis during the course of the disease. Surprisingly, hTau mice exhibited reductions in adult neurogenesis in 2 different brain regions by as early as 2 months of age, before the development of robust MAPT pathology in this model. This reduction was found to be due to reduced proliferation and not because of enhanced apoptosis in the hippocampus. At these same time points, hTau mice also exhibited altered MAPT phosphorylation with neurogenic precursors. To examine whether the effects of MAPT on neurogenesis were cell autonomous, neurospheres prepared from hTau animals were examined in vitro, revealing a growth deficit when compared with non-transgenic neurosphere cultures. Taken together, these studies provide evidence that altered adult neurogenesis is a robust and early marker of altered, cell-autonomous function of MAPT in the hTau mouse mode of tauopathy and that altered adult neurogenesis should be examined as a potential marker and therapeutic target for human tauopathies.
Collapse
Affiliation(s)
- Yutaro Komuro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, NC30, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Guixiang Xu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, NC30, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, MIND Institute, University of New Mexico, MSC08 4660, 1 University of New Mexico, Albuquerque, NM, USA
| | - Bruce T Lamb
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, NC30, 9500 Euclid Avenue, Cleveland, OH, USA.
| |
Collapse
|
14
|
Karelina K, Liu Y, Alzate-Correa D, Wheaton KL, Hoyt KR, Arthur JSC, Obrietan K. Mitogen and stress-activated kinases 1/2 regulate ischemia-induced hippocampal progenitor cell proliferation and neurogenesis. Neuroscience 2014; 285:292-302. [PMID: 25451279 DOI: 10.1016/j.neuroscience.2014.10.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/30/2014] [Accepted: 10/20/2014] [Indexed: 01/10/2023]
Abstract
Pathophysiological conditions such as cerebral ischemia trigger the production of new neurons from the neurogenic niche within the subgranular zone (SGZ) of the dentate gyrus. The functional significance of ischemia-induced neurogenesis is believed to be the regeneration of lost cells, thus contributing to post-ischemia recovery. However, the cell signaling mechanisms by which this process is regulated are still under investigation. Here, we investigated the role of mitogen and stress-activated protein kinases (MSK1/2) in the regulation of progenitor cell proliferation and neurogenesis after cerebral ischemia. Using the endothelin-1 model of ischemia, wild-type (WT) and MSK1(-/-)/MSK2(-/-) (MSK dKO) mice were injected with BrdU and sacrificed 2 days, 4 weeks, or 6 weeks later for the analysis of progenitor cell proliferation, neurogenesis, and neuronal morphology, respectively. We report a decrease in SGZ progenitor cell proliferation in MSK dKO mice compared to WT mice. Moreover, MSK dKO mice exhibited reduced neurogenesis and a delayed maturation of ischemia-induced newborn neurons. Further, structural analysis of neuronal arborization revealed reduced branching complexity in MSK dKO compared to WT mice. Taken together, this dataset suggests that MSK1/2 plays a significant role in the regulation of ischemia-induced progenitor cell proliferation and neurogenesis. Ultimately, revealing the cell signaling mechanisms that promote neuronal recovery will lead to novel pharmacological approaches for the treatment of neurodegenerative diseases such as cerebral ischemia.
Collapse
Affiliation(s)
- K Karelina
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Y Liu
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - D Alzate-Correa
- Division of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - K L Wheaton
- Division of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - K R Hoyt
- Division of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - J S C Arthur
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - K Obrietan
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Profiling status epilepticus-induced changes in hippocampal RNA expression using high-throughput RNA sequencing. Sci Rep 2014; 4:6930. [PMID: 25373493 PMCID: PMC4894418 DOI: 10.1038/srep06930] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/09/2014] [Indexed: 12/30/2022] Open
Abstract
Status epilepticus (SE) is a life-threatening condition that can give rise to a number of neurological disorders, including learning deficits, depression, and epilepsy. Many of the effects of SE appear to be mediated by alterations in gene expression. To gain deeper insight into how SE affects the transcriptome, we employed the pilocarpine SE model in mice and Illumina-based high-throughput sequencing to characterize alterations in gene expression from the induction of SE, to the development of spontaneous seizure activity. While some genes were upregulated over the entire course of the pathological progression, each of the three sequenced time points (12-hour, 10-days and 6-weeks post-SE) had a largely unique transcriptional profile. Hence, genes that regulate synaptic physiology and transcription were most prominently altered at 12-hours post-SE; at 10-days post-SE, marked changes in metabolic and homeostatic gene expression were detected; at 6-weeks, substantial changes in the expression of cell excitability and morphogenesis genes were detected. At the level of cell signaling, KEGG analysis revealed dynamic changes within the MAPK pathways, as well as in CREB-associated gene expression. Notably, the inducible expression of several noncoding transcripts was also detected. These findings offer potential new insights into the cellular events that shape SE-evoked pathology.
Collapse
|
16
|
Ribosomal S6 kinase regulates ischemia-induced progenitor cell proliferation in the adult mouse hippocampus. Exp Neurol 2013; 253:72-81. [PMID: 24291236 DOI: 10.1016/j.expneurol.2013.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/14/2013] [Accepted: 11/22/2013] [Indexed: 12/14/2022]
Abstract
Ischemia-induced progenitor cell proliferation is a prominent example of the adult mammalian brain's ability to regenerate injured tissue resulting from pathophysiological processes. In order to better understand and exploit the cell signaling mechanisms that regulate ischemia-induced proliferation, we examined the role of the p42/44 mitogen-activated protein kinase (MAPK) cascade effector ribosomal S6 kinase (RSK) in this process. Here, using the endothelin-1 ischemia model in wild type mice, we show that the activated form of RSK is expressed in the progenitor cells of the subgranular zone (SGZ) after intrahippocampal cerebral ischemia. Further, RSK inhibition significantly reduces ischemia-induced SGZ progenitor cell proliferation. Using the neurosphere assay, we also show that both SGZ- and subventricular zone (SVZ)-derived adult neural stem cells (NSC) exhibit a significant reduction in proliferation in the presence of RSK and MAPK inhibitors. Taken together, these data reveal RSK as a regulator of ischemia-induced progenitor cell proliferation, and as such, suggest potential therapeutic value may be gained by specifically targeting the regulation of RSK in the progenitor cell population of the SGZ.
Collapse
|
17
|
García-García AL, Venzala E, Elizalde N, Ramírez MJ, Urbiola A, Del Rio J, Lanfumey L, Tordera RM. Regulation of serotonin (5-HT) function by a VGLUT1 dependent glutamate pathway. Neuropharmacology 2012; 70:190-9. [PMID: 23168115 DOI: 10.1016/j.neuropharm.2012.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 10/13/2012] [Accepted: 11/02/2012] [Indexed: 01/05/2023]
Abstract
Unraveling the mechanisms of 5-HT neuron control might provide new insights into depression pathophysiology. In addition to the inhibitory 5-HT1A autoreceptors, cortico-raphe glutamatergic descending pathways are suggested to modulate 5-HT activity in the DRN. Here we studied how decreased VGLUT1 levels in the brain stem affect glutamate regulation of 5-HT function. VGLUT1+/- mice (C57BL/6) and wild type (WT) littermates were used. VGLUT1 expression in the DRN, 5-HT turnover and immuno histochemical analysis of neuronal activity in different areas was studied. Moreover, the functionality of the inhibitory 5-HT1A autoreceptor was assessed using electrophysiological, biochemical and pharmacological approaches. VGLUT1 immunoreactivity was markedly lower in the DRN of the VGLUT1+/- mice and specifically, in the surroundings of GABA and 5-HT cell bodies. These mice showed decreased induced neuronal activity in 5-HT cells bodies and in different forebrain areas, as well as decreased hippocampal cell proliferation and 5-HT turnover. Further, 5-HT1A autoreceptor desensitization was evidenced by electrophysiological studies, GTP-γ-S coupling to 5-HT1A autoreceptor and a lower hypothermic response to 5-HT1A activation. This study shows first time that VGLUT1 dependent glutamate innervation of the DRN could modulate 5-HT function.
Collapse
|