1
|
Ramshini E, Shabani M. Cannabinoid receptor type 1 agonist disrupts methamphetamine-induced conditioned place preference in adolescent male rats. Neurosci Lett 2024:138033. [PMID: 39489281 DOI: 10.1016/j.neulet.2024.138033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/28/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Addiction can be viewed as a state of compulsive engagement in drug use. It is believed that drug-associated memories maintain compulsive drug-seeking behavior. Therefore, disrupting drug-associated memories may reduce drug-seeking behavior. In the present study, a conditioned place preference (CPP) apparatus was conducted to evaluate the effect of cannabinoid receptor type 1 (CB1R) agonist and antagonist on the acquisition of CPP induced by methamphetamine (METH). Anxiety behaviors and memory retrieval were assessed using elevated plus maze (EPM) and step-through passive avoidance tasks. In this study using a 5-day schedule of CPP, exposure to METH increased the time spent in the drug-paired compartment, and CB1Rs agonist (WIN 55,212-2, WIN) disrupted the METH-induced CPP. In the EPM experiment, METH significantly decreased the ratio of times spent in the open arms to total times spent in any arms (OAT) and the ratio of entries into open arms to total entries (OAE), indicating that METH increases anxiety-like behaviors. However, CB1Rs antagonist (SR141716A, SR) reversed METH-induced anxiety behaviors. The results obtained in the passive avoidance experiment showed that blockade of brain CB1Rs by SR improves METH-induced amnesia. In summary, it seems that CB1Rs play a modulatory role in METH-associated memories and CB1Rs antagonist can be a therapeutic target for METH-induced anxiety behaviors.
Collapse
Affiliation(s)
- Effat Ramshini
- Department of Physiology, Kerman University of Medical Sciences, Kerman Neuroscience Research Center, Kerman, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Cui X, Gao B, Yu Y, Gu Y, Hu L. Chronic Administration of Methamphetamine Aggravates Atherosclerotic Vulnerable Plaques in Apolipoprotein E Knockout Mice Fed with a High-cholesterol Diet. Curr Mol Med 2024; 24:495-504. [PMID: 36944618 DOI: 10.2174/1566524023666230321095233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND It has been observed previously that chronic methamphetamine (METH) administration could upregulate neuropeptide Y (NPY) expression and promote atherosclerotic formation in apolipoprotein E knockout (ApoE-/-) mice fed with a normal cholesterol or high diet and NPY might be involved in the pathogenesis of METHinduced atherogenic effects through NPY Y1 receptor pathway. Vulnerable coronary atherosclerotic plaque (VP) is a critical pathological finding responsible for the acute coronary syndrome (ACS). In this study, we explored whether METH abuse could aggravate the formation of VP in ApoE-/- mice fed with high cholesterol diet. OBJECTIVE The purpose of this study was to observe if chronic METH administration could aggravate vulnerable plaque (VP) formation in ApoE-/- mice fed with a highcholesterol diet. METHODS Male ApoE-/- mice fed with a high-cholesterol diet were intraperitoneally injected with normal saline (NS) or 8 mg/kg/day METH (M8) for 24 weeks. Body weight was monitored from baseline to 24 weeks at 2 weeks intervals. After 24 weeks of treatment, plasma lipid variables were measured. Movat's staining and immunohistochemical staining were performed on frozen sections of the aortic roots to calculate VP percentage and intraplaque hemorrhage (IPH) percentage and detect expression of NPY, vascular endothelial growth factor (VEGF), and CD31. In vitro, the expressions of Y2R, VEGF, and CD31 were detected by immunofluorescence staining in aortic endothelial cells incubated with PBS, 100μM METH, 10nmol NPY, or 100μM METH plus 10nmol NPY for 12 hours. RESULTS The CD31 positive area, percentage of IPH, VP, and the expressions of NPY and VEGF were significantly increased in the M8 group than in the NS group. In vitro, the expressions of Y2R, VEGF, and CD31 were significantly increased in the METH+NPY group than in the PBS, METH, and NPY groups and these effects could be blunted by treatment with a Y2R antagonist or DPPIV inhibitor. CONCLUSION Chronic METH administration could aggravate VP in ApoE-/- mice fed with a high-cholesterol diet, possibly through upregulating vascular NPY and VEGF expression and promoting angiogenesis and vessel rupture in atherosclerotic plaques. Our findings indicated that increased VP formation might contribute to the development of acute coronary syndrome post-chronic METH abuse by activating DPPIV/NPY/Y2R pathway.
Collapse
MESH Headings
- Animals
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/etiology
- Methamphetamine/adverse effects
- Methamphetamine/administration & dosage
- Methamphetamine/pharmacology
- Mice
- Male
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Mice, Knockout
- Diet, High-Fat/adverse effects
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/etiology
- Atherosclerosis/chemically induced
- Atherosclerosis/genetics
- Cholesterol, Dietary/adverse effects
- Cholesterol, Dietary/administration & dosage
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Mice, Knockout, ApoE
- Disease Models, Animal
Collapse
Affiliation(s)
- Xiaoxue Cui
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital, Wuhan, Hubei, China
| | - Bo Gao
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital, Wuhan, Hubei, China
| | - Yijun Yu
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital, Wuhan, Hubei, China
| | - Ye Gu
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital, Wuhan, Hubei, China
| | - Liqun Hu
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital, Wuhan, Hubei, China
| |
Collapse
|
3
|
Bale R, Doshi G. Cross talk about the role of Neuropeptide Y in CNS disorders and diseases. Neuropeptides 2023; 102:102388. [PMID: 37918268 DOI: 10.1016/j.npep.2023.102388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
A peptide composed of a 36 amino acid called Neuropeptide Y (NPY) is employed in a variety of physiological processes to manage and treat conditions affecting the endocrine, circulatory, respiratory, digestive, and neurological systems. NPY naturally binds to G-protein coupled receptors, activating the Y-receptors (Y1-Y5 and y6). The findings on numerous therapeutic applications of NPY for CNS disease are presented in this review by the authors. New targets for treating diseases will be revealed by medication combinations that target NPY and its receptors. This review is mainly focused on disorders such as anxiety, Alzheimer's disease, Parkinson's disease, Huntington's disease, Machado Joseph disease, multiple sclerosis, schizophrenia, depression, migraine, alcohol use disorder, and substance use disorder. The findings from the preclinical studies and clinical studies covered in this article may help create efficient therapeutic plans to treat neurological conditions on the one hand and psychiatric disorders on the other. They may also open the door to the creation of novel NPY receptor ligands as medications to treat these conditions.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India.
| |
Collapse
|
4
|
Seyedhosseini Tamijani SM, Beirami E, Ghazvini H, Rafaiee R, Nazeri M, Razavinasab M. A Review on the Disruption of Novel Object Recognition Induced by Methamphetamine. ADDICTION & HEALTH 2023; 15:289-297. [PMID: 38322487 PMCID: PMC10843358 DOI: 10.34172/ahj.2023.1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/07/2021] [Indexed: 02/08/2024]
Abstract
Background Methamphetamine (MA), is a widely abused synthetic psychostimulant that leads to irreversible brain damage manifested as cognitive impairments in humans and animals. The novel object recognition (NOR) task is a commonly used behavioral assay for the investigation of non-spatial memory in rodents. This test is based on the natural tendency of rodents to spend more time exploring a novel object than a familiar one. NOR test has been used in many studies investigating cognitive deficits caused by MA in rodents. The objective of the present study was to review neurobiological mechanisms that might be responsible for MA-induced NOR alterations. Methods A PubMed search showed 83 publications using novel object recognition and methamphetamine as keywords in the past 10 years. Findings The present study revealed different MA regimens cause recognition memory impairment in rodents. In addition, it was found that the main neurobiological mechanism involved in MA-induced recognition deficits is the dysfunction of monoaminergic systems. Conclusion NOR is a useful test to assess the cognitive functions following MA administration and evaluate the efficacy of new therapeutic agents in MA-addicted individuals.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hamed Ghazvini
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Raheleh Rafaiee
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Nazeri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Dong W, Lu Y, Zhai Y, Bi Y, Peng Y, Ju Z, Xu T, Zhong X, Zhang Y, Zhong C. Plasma neuropeptide Y and cognitive impairment after acute ischemic stroke. J Affect Disord 2022; 317:221-227. [PMID: 36029875 DOI: 10.1016/j.jad.2022.08.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND AND PURPOSE Neuropeptide Y (NPY) has a modulatory role in learning and memory, and is involved in the pathophysiology of neurodegenerative diseases. However, there was no population-based evidence on the relationship between NPY and post-stroke cognitive impairment (PSCI). We aimed to prospectively examine the association between plasma NPY and cognitive impairment among patients with acute ischemic stroke. METHODS On the basis of samples from the China Antihypertensive Trial in Acute Ischemic Stroke, 593 patients with baseline plasma NPY levels were finally included in this study. The study outcome was cognitive impairment (Montreal Cognitive Assessment score < 26) at 3 months after ischemic stroke. Logistic regression models were used to estimate the risk of cognitive impairment. RESULTS After 3 months of follow-up, 422 participants (71.2 %) experienced cognitive impairment. Multivariable-adjusted odds ratio (95 % confidence interval) for the highest tertile of NPY was 0.58 (0.36-0.92) compared with the lowest tertile. Each 1-SD higher log-NPY was associated with a decreased risk of 20 % (95 % confidence interval 2 %-34 %) for PSCI. The addition of plasma NPY to the basic model with conventional risk factors improved the risk reclassification (continuous net reclassification index was 22.8 %, p = 0.01; integrated discrimination improvement was 0.9 %, p = 0.02) for PSCI. LIMITATIONS We measured plasma NPY only once at baseline and failed to explore the association between NPY changes and PSCI. CONCLUSIONS Elevated plasma NPY levels were associated with a decreased risk of cognitive impairment, suggesting plasma NPY may serve as a predictive factor and potential therapeutic target for PSCI.
Collapse
Affiliation(s)
- Wenjing Dong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yaling Lu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yujia Zhai
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yucong Bi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Inner Mongolia, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xiaoyan Zhong
- School of Public Health, Medical College of Soochow University, Suzhou, China.
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Guerrero-Bautista R, Franco-García A, Hidalgo JM, Fernández-Gómez FJ, Ribeiro Do Couto B, Milanés MV, Núñez C. Distinct Regulation of Dopamine D3 Receptor in the Basolateral Amygdala and Dentate Gyrus during the Reinstatement of Cocaine CPP Induced by Drug Priming and Social Stress. Int J Mol Sci 2021; 22:3100. [PMID: 33803578 PMCID: PMC8002864 DOI: 10.3390/ijms22063100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/16/2023] Open
Abstract
Relapse in the seeking and intake of cocaine is one of the main challenges when treating its addiction. Among the triggering factors for the recurrence of cocaine use are the re-exposure to the drug and stressful events. Cocaine relapse engages the activity of memory-related nuclei, such as the basolateral amygdala (BLA) and the hippocampal dentate gyrus (DG), which are responsible for emotional and episodic memories. Moreover, D3 receptor (D3R) antagonists have recently arisen as a potential treatment for preventing drug relapse. Thus, we have assessed the impact of D3R blockade in the expression of some dopaminergic markers and the activity of the mTOR pathway, which is modulated by D3R, in the BLA and DG during the reinstatement of cocaine-induced conditioned place preference (CPP) evoked by drug priming and social stress. Reinstatement of cocaine CPP paralleled an increasing trend in D3R and dopamine transporter (DAT) levels in the BLA. Social stress, but not drug-induced reactivation of cocaine memories, was prevented by systemic administration of SB-277011-A (a selective D3R antagonist), which was able, however, to impede D3R and DAT up-regulation in the BLA during CPP reinstatement evoked by both stress and cocaine. Concomitant with cocaine CPP reactivation, a diminution in mTOR phosphorylation (activation) in the BLA and DG occurred, which was inhibited by D3R blockade in both nuclei before the social stress episode and only in the BLA when CPP reinstatement was provoked by a cocaine prime. Our data, while supporting a main role for D3R signalling in the BLA in the reactivation of cocaine memories evoked by social stress, indicate that different neural circuits and signalling mechanisms might mediate in the reinstatement of cocaine-seeking behaviours depending upon the triggering stimuli.
Collapse
Affiliation(s)
- Rocío Guerrero-Bautista
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Juana M. Hidalgo
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Francisco José Fernández-Gómez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Bruno Ribeiro Do Couto
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
- Department of Anatomy and Psychobiology, University of Murcia, 30100 Murcia, Spain
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University of Murcia, 30120 Murcia, Spain; (R.G.-B.); (A.F.-G.); (J.M.H.); (F.J.F.-G.)
- Instituto Murciano de Investigación Biosanitaria (IMIB), 30120 Murcia, Spain;
| |
Collapse
|
7
|
Szczygieł JA, Danielsen KI, Melin E, Rosenkranz SH, Pankratova S, Ericsson A, Agerman K, Kokaia M, Woldbye DPD. Gene Therapy Vector Encoding Neuropeptide Y and Its Receptor Y2 for Future Treatment of Epilepsy: Preclinical Data in Rats. Front Mol Neurosci 2020; 13:232. [PMID: 33343295 PMCID: PMC7746806 DOI: 10.3389/fnmol.2020.603409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023] Open
Abstract
Gene therapy to treat pharmacoresistant temporal lobe epilepsy in humans is now being developed using an AAV vector (CG01) that encodes the combination of neuropeptide Y and its antiepileptic receptor Y2. With this in mind, the present study aimed to provide important preclinical data on the effects of CG01 on the duration of transgene expression, cellular tropism, and potential side effects on body weight and cognitive function. The CG01 vector was administered unilaterally into the dorsal and ventral hippocampus of adult male rats and expression of both transgenes was found to remain elevated without a sign of decline at 6 months post-injection. CG01 appeared to mediate expression selectively in hippocampal neurons, without expression in astrocytes or oligodendrocytes. No effects were seen on body weight as well as on short- or long-term memory as revealed by testing in the Y-maze or Morris water maze tests. Thus these data show that unilateral CG01 vector treatment as future gene therapy in pharmacoresistant temporal lobe epilepsy patients should result in stable and long-term expression predominantly in neurons and be well tolerated without side effects on body weight and cognitive function.
Collapse
Affiliation(s)
| | - Kira Iben Danielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | - Esbjörn Melin
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | | | | | | | | | - Merab Kokaia
- Experimental Epilepsy Group, Epilepsy Centre, Lund University Hospital, Lund, Sweden
| | | |
Collapse
|
8
|
Ventura F, Muga M, Coelho-Santos V, Fontes-Ribeiro CA, Leitão RA, Silva AP. Protective effect of neuropeptide Y2 receptor activation against methamphetamine-induced brain endothelial cell alterations. Toxicol Lett 2020; 334:53-59. [PMID: 32956829 DOI: 10.1016/j.toxlet.2020.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH) consumption is a health problem that leads to neurological and psychiatric disturbances. The cellular alterations behind these conditions have been extensively investigated and it is now well-established that METH causes cerebrovascular alterations being a key feature in drug-induced neuropathology. Although promising advances in understanding the blood-brain barrier (BBB) alterations induced by METH, there is still no available approach to counteract or diminish such effects. Interestingly, several studies show that neuropeptide Y (NPY) has an important protective role against METH-induced neuronal and glial toxicity, as well as behavioral deficits. Despite these beneficial effects of the NPY system, nothing is known about its role in brain endothelial cells under conditions of METH exposure. Thus, our aim was to unravel the effect of NPY and its receptors against METH-induced endothelial cell dysfunction. For that, we used a human brain microvascular endothelial cell line (hCMEC/D3) and our results demonstrate that endothelial cells express both NPY Y1 (Y1R) and Y2 (Y2R) receptors, but only Y2R is upregulated after METH exposure. Moreover, this drug of abuse induced endothelial cell death and elicited the production of reactive oxygen species (ROS) by these cells, which were prevented by the activation of Y2R. Additional, cell death and oxidative stress triggered by METH were dependent on the concentration of the drug. In sum, with the present study we identified for the first time the NPY system, and particularly the Y2R subtype, as a promising target to protect against METH-induced neurovascular dysfunction.
Collapse
Affiliation(s)
- Fabiana Ventura
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Mariana Muga
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Vanessa Coelho-Santos
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Carlos A Fontes-Ribeiro
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ricardo A Leitão
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
9
|
Campos-Ordonez T, Zarate-Lopez D, Ibarra-Castaneda N, Buritica J, Gonzalez-Perez O. Cyclohexane Inhalation Produces Long-Lasting Alterations in the Hippocampal Integrity and Reward-Seeking Behavior in the Adult Mouse. Cell Mol Neurobiol 2019; 39:435-449. [PMID: 30771197 DOI: 10.1007/s10571-019-00660-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Cyclohexane (CHX) is an organic solvent commonly used as a drug-of-abuse. This drug increases the oxidative stress and glial reactivity in the hippocampus, which suggests that this brain region is vulnerable to CHX effects. This study aimed to establish the behavioral changes and the pathological alterations that occur in the Cornu Ammonis 3 (CA3) and Dentate Gyrus (DG) after a long-lasting exposure to CHX. We exposed CD1 mice to a recreational-like dose of CHX (~ 30,000 ppm) for 30 days and explored its consequences in motor skills, reward-seeking behavior, and the CA3 and DG hippocampal subfields. Twenty-four hours after the last administration of CHX, we found a significant decrease in the number of c-Fos+ cells in the hippocampal CA3 and DG regions. This event coincided with an increased in NMDAR1 expression and apoptotic cells in the CA3 region. At day 13th without CHX, we found a persistent reduction in the number of c-Fos+ and TUNEL+ cells in DG. At both time points, the CHX-exposed mice showed a strong overexpression of neuropeptide Y (NPY) in the CA3 stratum lucidum and the hippocampal hilus. In parallel, we used an operant-based task to assess motor performance and operant conditioning learning. The behavioral analysis indicated that CHX did not modify the acquisition of operant conditioning tasks, but affected some motor skills and increased the reward-seeking behavior. Altogether, this evidence reveals that CHX exposure provokes long-lasting changes in the hippocampal subfields, induces motor impairments and increases the motivation-guided behavior. These findings can help understand the deleterious effect of CHX into the adult hippocampus and unveil its potential to trigger addiction-like behaviors.
Collapse
Affiliation(s)
- Tania Campos-Ordonez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
- Physiological Sciences PhD Program, School of Medicine, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
- Physiological Sciences PhD Program, School of Medicine, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - Nereida Ibarra-Castaneda
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico
| | - Jonathan Buritica
- Centro de Estudios e Investigaciones en Comportamiento, University of Guadalajara, St. Francisco de Quevedo 180, 44130, Guadalajara, Jalisco, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Av. Universidad 333, 28040, Colima, Colonia, Mexico.
| |
Collapse
|
10
|
Activation of NPY-Y2 receptors ameliorates disease pathology in the R6/2 mouse and PC12 cell models of Huntington's disease. Exp Neurol 2018; 302:112-128. [DOI: 10.1016/j.expneurol.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022]
|
11
|
Seyedhosseini Tamijani SM, Beirami E, Ahmadiani A, Dargahi L. Effect of three different regimens of repeated methamphetamine on rats' cognitive performance. Cogn Process 2017; 19:107-115. [PMID: 28948389 DOI: 10.1007/s10339-017-0839-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 09/18/2017] [Indexed: 11/25/2022]
Abstract
Neurocognitive impairment in response to methamphetamine (MA) has been proven in a variety of experimental and clinical studies. Elucidation of the underlying mechanisms of MA-induced cognitive deficits and finding preventive/therapeutic approaches need best-suited animal models. In modeling repeated MA exposure, while some believes that escalating doses simulate drug abuse conditions, others believe this regimen confers a preconditioning protection. The present study aimed to compare the effects of three different regimens of repeated MA administration on memory and cognitive function of adult rats. Rats in two different experimental groups were treated with escalating paradigms consisted of twice-daily i.p. injections; 1-4 mg/kg over 7 days or 1-10 mg/kg over 10 days. The third group received twice-daily doses of 15 mg/kg every other day over 14 days. Spatial working memory, novel object recognition task and anxiety-like behavior were measured sequentially in all MA-treated rats and vehicle-treated controls started from day 8 after last injection. All MA regimens decreased rates of spontaneous alternation in Y-maze and increased anxiety-like response. Short-term recognition memory was unchanged across all MA-treated animals, while long-term memory was impaired in the second and third MA regimen. Though MA deleterious effect especially in recognition memory is somehow dose dependent, preconditioning effect of increasing doses may be ruled out at least in the case of parameters measured here.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran.
| |
Collapse
|
12
|
Robinson SL, Thiele TE. The Role of Neuropeptide Y (NPY) in Alcohol and Drug Abuse Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:177-197. [PMID: 29056151 DOI: 10.1016/bs.irn.2017.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropeptide Y (NPY) is a neuromodulator that is widely expressed throughout the central nervous system (CNS) and which is cosecreted with classic neurotransmitters including GABA and glutamate. There is a long history of research implicating a role for NPY in modulating neurobiological responses to alcohol (ethanol) as well as other drugs of abuse. Both ethanol exposure and withdrawal from chronic ethanol have been shown to produce changes in NPY and NPY receptor protein levels and mRNA expression in the CNS. Importantly, manipulations of NPY Y1 and Y2 receptor signaling have been shown to alter ethanol consumption and self-administration in a brain region-specific manner, with Y1 receptor activation and Y2 receptor blockade in regions of the extended amygdala promoting robust reductions of ethanol intake. Similar observations have been made in studies examining neurobiological responses to nicotine, psychostimulants, and opioids. When taken together with observations of potential genetic linkage between the NPY system and the human alcohol abuse disorders, NPY represents a promising target for treating problematic alcohol and drug use, and in protecting individuals from relapse during abstinence.
Collapse
Affiliation(s)
- Stacey L Robinson
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Todd E Thiele
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
13
|
Leitão RA, Sereno J, Castelhano JM, Gonçalves SI, Coelho-Santos V, Fontes-Ribeiro C, Castelo-Branco M, Silva AP. Aquaporin-4 as a New Target against Methamphetamine-Induced Brain Alterations: Focus on the Neurogliovascular Unit and Motivational Behavior. Mol Neurobiol 2017; 55:2056-2069. [DOI: 10.1007/s12035-017-0439-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/03/2017] [Indexed: 02/01/2023]
|
14
|
Exercise protects against methamphetamine-induced aberrant neurogenesis. Sci Rep 2016; 6:34111. [PMID: 27677455 PMCID: PMC5039713 DOI: 10.1038/srep34111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
While no effective therapy is available for the treatment of methamphetamine (METH)-induced neurotoxicity, aerobic exercise is being proposed to improve depressive symptoms and substance abuse outcomes. The present study focuses on the effect of exercise on METH-induced aberrant neurogenesis in the hippocampal dentate gyrus in the context of the blood-brain barrier (BBB) pathology. Mice were administered with METH or saline by i.p. injections for 5 days with an escalating dose regimen. One set of mice was sacrificed 24 h post last injection of METH, and the remaining animals were either subjected to voluntary wheel running (exercised mice) or remained in sedentary housing (sedentary mice). METH administration decreased expression of tight junction (TJ) proteins and increased BBB permeability in the hippocampus. These changes were preserved post METH administration in sedentary mice and were associated with the development of significant aberrations of neural differentiation. Exercise protected against these effects by enhancing the protein expression of TJ proteins, stabilizing the BBB integrity, and enhancing the neural differentiation. In addition, exercise protected against METH-induced systemic increase in inflammatory cytokine levels. These results suggest that exercise can attenuate METH-induced neurotoxicity by protecting against the BBB disruption and related microenvironmental changes in the hippocampus.
Collapse
|
15
|
Long-Term Treatment with Low Doses of Methamphetamine Promotes Neuronal Differentiation and Strengthens Long-Term Potentiation of Glutamatergic Synapses onto Dentate Granule Neurons. eNeuro 2016; 3:eN-NWR-0141-16. [PMID: 27419216 PMCID: PMC4939399 DOI: 10.1523/eneuro.0141-16.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023] Open
Abstract
Methamphetamine (METH) is a psychostimulant, affecting hippocampal function with disparate cognitive effects, which depends on the dose and time of administration, ranging from improvement to impairment of memory. Importantly, in the United States, METH is approved for the treatment of attention deficit hyperactivity disorder. Modifications of long-term plasticity of synapses originating from the entorhinal cortex onto dentate granule cells (DGCs) have been proposed to underlie cognitive alterations similar to those seen in METH users. However, the effects of METH on synaptic plasticity of the dentate gyrus are unknown. Here, we investigated the impact of long-term administration of METH (2 mg/kg/d) on neurogenesis and synaptic plasticity of immature and mature DGCs of juvenile mice. We used a mouse model of neurogenesis (the G42 line of GAD67-GFP), in which GFP is expressed by differentiating young DGCs. METH treatment enhanced the differentiation of GFP(+) cells, as it increased the fraction of GFP(+) cells expressing the neuronal marker NeuN, and decreased the amount of immature DGCs coexpressing doublecortin. Interestingly, METH did not change the magnitude of long-term potentiation (LTP) in more immature neurons, but facilitated LTP induction in more differentiated GFP(+) and strengthened plasticity in mature GFP(-) DGCs. The METH-induced facilitation of LTP in GFP(+) neurons was accompanied with spine enlargement. Our results reveal a specific action of long-term use of METH in the long-term plasticity of excitatory synapses onto differentiating DGCs and might have important implications toward the understanding of the synaptic basis of METH-induced cognitive alterations.
Collapse
|
16
|
Gonçalves J, Martins J, Baptista S, Ambrósio AF, Silva AP. Effects of drugs of abuse on the central neuropeptide Y system. Addict Biol 2016; 21:755-65. [PMID: 25904345 DOI: 10.1111/adb.12250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuropeptide Y (NPY), which is widely expressed in the central nervous system is involved in several neuropathologies including addiction. Here we comprehensively and systematically review alterations on the central NPY system induced by several drugs. We report on the effects of psychostimulants [cocaine, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and nicotine], ethanol, and opioids on NPY protein levels and expression of different NPY receptors. Overall, expression and function of NPY and its receptors are changed under conditions of drug exposure, thus affecting several physiologic behaviors, such as feeding, stress and anxiety. Drugs of abuse differentially affect the components of the NPY system. For example methamphetamine and nicotine lead to a consistent increase in NPY mRNA and protein levels in different brain sites whereas ethanol and opioids decrease NPY mRNA and protein expression. Drug-induced alterations on the different NPY receptors show more complex regulation pattern. Manipulation of the NPY system can have opposing effects on reinforcing and addictive properties of drugs of abuse. NPY can produce pro-addictive effects (nicotine and heroin), but can also exert inhibitory effects on addictive behavior (AMPH, ethanol). Furthermore, NPY can act as a neuroprotective agent in chronically methamphetamine and MDMA-treated rodents. In conclusion, manipulation of the NPY system seems to be a potential target to counteract neural alterations, addiction-related behaviors and cognitive deficits induced by these drugs.
Collapse
Affiliation(s)
- Joana Gonçalves
- Institute of Nuclear Sciences Applied to Health (ICNAS); University of Coimbra; Portugal
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
| | - João Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Centre of Ophthalmology and Vision Sciences; Faculty of Medicine; University of Coimbra; Portugal
| | - Sofia Baptista
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Laboratory of Pharmacology and Experimental Therapeutics; Faculty of Medicine; University of Coimbra; Portugal
| | - António Francisco Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Centre of Ophthalmology and Vision Sciences; Faculty of Medicine; University of Coimbra; Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI); Portugal
| | - Ana Paula Silva
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Laboratory of Pharmacology and Experimental Therapeutics; Faculty of Medicine; University of Coimbra; Portugal
| |
Collapse
|
17
|
Beart PM. Synaptic signalling and its interface with neuropathologies: snapshots from the past, present and future. J Neurochem 2016; 139 Suppl 2:76-90. [PMID: 27144305 DOI: 10.1111/jnc.13598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
This 'Past to Future' Review as part of the 60th anniversary year of the Journal of Neurochemistry focuses on synaptic transmission and associated signalling, and seeks to identify seminal progress in neurochemistry over the last 10 years which has advanced our understanding of neuronal communication in brain. The approach adopted analyses neurotransmitters on a case by case basis (i.e. amino acids, monoamines, acetylcholine, neuropeptides, ATP/purines and gasotransmitters) to highlight novel findings that have changed the way we view each type of transmitter, to explore commonalities and interactions, and to note how new insights have changed the way we view the biology of degenerative, psychiatric and behavioural conditions. Across all transmitter systems there was remarkable growth in the identification of targets likely to provide therapeutic benefit and which undoubtedly was driven by the elucidation of circuit function and new vistas of synaptic signalling. There has been an increasing trend to relate signalling to disease, notably for Alzheimer's and Parkinson's disease and related conditions, and which has occurred for each transmitter family. Forebrain circuitry and tonic excitatory control have been the centre of great attention yielding novel findings that will impact upon cognitive, emotional and addictive behaviours. Other impressive insights focus on gasotransmitters integrating activity as volume transmitters. Exciting developments in how serotonin, cholinergic, l-glutamate, galanin and adenosine receptors and their associated signalling can be beneficially targeted should underpin the development of new therapies. Clearly integrated, multifaceted neurochemistry has changed the way we view synaptic signalling and its relevance to pathobiology. Highlighted are important advances in synaptic signalling over the last decade in the Journal of Neurochemistry. Across all transmitter systems elucidation of circuit function, and notably molecular insights, have underpinned remarkable growth in the identification of targets likely to provide therapeutic benefit in neuropathologies. Another commonality was wide interest in forebrain circuitry and its tonic excitatory control. Increasingly observations relate to signalling in disease and behavioural conditions. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Philip M Beart
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
18
|
Liao TY, Tzeng WY, Wu HH, Cherng CG, Wang CY, Hu SSJ, Yu L. Rottlerin impairs the formation and maintenance of psychostimulant-supported memory. Psychopharmacology (Berl) 2016; 233:1455-65. [PMID: 26960698 DOI: 10.1007/s00213-016-4251-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/07/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVE Since brain proteins such as protein kinase C (PKC), brain-derived neurotrophic factor (BDNF), and mammalian target of rapamycin (mTOR) are involved in the establishment and maintenance of psychostimulant memory, we sought to determine if systemic treatment with rottlerin, a natural compound affecting all these proteins, may modulate stimulant-supported memory. MATERIALS AND METHODS Stimulant-induced conditioned place preference (CPP) was used in modeling stimulant-supported memory. RESULTS Three cocaine (10 mg/kg; COC) or three methamphetamine (1 mg/kg; MA) conditioning trials reliably established the drug-induced CPP in male C57BL/6 mice. An intra-peritoneal rottlerin injection (5 mg/kg) at least 24 h prior to the first COC or first MA conditioning trial prevented the establishment of CPP. Following the establishment of the COC- or MA-induced CPP, saline conditioning trial was used to extinguish the CPP. Rottlerin (5 mg/kg, intra-peritoneal (i.p.)) administered 20 h prior to the first saline conditioning trial diminished subsequent drug- and stressor-primed reinstatement of the extinguished CPP. Rottlerin (5 mg/kg, i.p.) produced a fast-onset and long-lasting increase in hippocampal BDNF levels. However, treatment with a BDNF tropomyosin receptor kinase B (TrkB) receptor antagonist, K252a (5 μg/kg), did not affect rottlerin's suppressing effect on COC-induced CPP and treatment with 7,8-dihydroxyflavone (10 mg/kg x 6, 7,8-DHF), a selective TrkB agonist, prior to each conditioning trial did not affect COC-induced CPP. CONCLUSION These results suggest that systemic rottlerin treatment may impair the formation of COC- and MA-supported memory. Importantly, such a treatment may advance our understanding of the underlying mechanism through which extinction training resulted in the "forgetting" of the COC- and MA-supported memory.
Collapse
Affiliation(s)
- Tien You Liao
- Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, 1 University Rd., Tainan, 70101, Taiwan, ROC
| | - Wen-Yu Tzeng
- Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, 1 University Rd., Tainan, 70101, Taiwan, ROC
| | - Hsin-Hua Wu
- Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, 1 University Rd., Tainan, 70101, Taiwan, ROC
| | - Chianfang G Cherng
- Department of Health Psychology, Chang Jung Christian University, Tainan, 71101, Taiwan, ROC
| | - Ching-Yi Wang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan, ROC
| | - Sherry S-J Hu
- Department of Psychology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Lung Yu
- Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, 1 University Rd., Tainan, 70101, Taiwan, ROC. .,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, 70101, Taiwan, ROC.
| |
Collapse
|
19
|
Gøtzsche CR, Woldbye DPD. The role of NPY in learning and memory. Neuropeptides 2016; 55:79-89. [PMID: 26454711 DOI: 10.1016/j.npep.2015.09.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023]
Abstract
High levels of NPY expression in brain regions important for learning and memory together with its neuromodulatory and neurotrophic effects suggest a regulatory role for NPY in memory processes. Therefore it is not surprising that an increasing number of studies have provided evidence for NPY acting as a modulator of neuroplasticity, neurotransmission, and memory. Here these results are presented in relation to the types of memory affected by NPY and its receptors. NPY can exert both inhibitory and stimulatory effects on memory, depending on memory type and phase, dose applied, brain region, and NPY receptor subtypes. Thus NPY act as a resilience factor by impairing associative implicit memory after stressful and aversive events, as evident in models of fear conditioning, presumably via Y1 receptors in the amygdala and prefrontal cortex. In addition, NPY impairs acquisition but enhances consolidation and retention in models depending on spatial and discriminative types of associative explicit memory, presumably involving Y2 receptor-mediated regulations of hippocampal excitatory transmission. Moreover, spatial memory training leads to increased hippocampal NPY gene expression that together with Y1 receptor-mediated neurogenesis could constitute necessary steps in consolidation and long-term retention of spatial memory. Altogether, NPY-induced effects on learning and memory seem to be biphasic, anatomically and temporally differential, and in support of a modulatory role of NPY at keeping the system in balance. Obtaining further insight into memory-related effects of NPY could inspire the engineering of new therapeutics targeting diseases where impaired learning and memory are central elements.
Collapse
Affiliation(s)
- C R Gøtzsche
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark.
| | - D P D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark
| |
Collapse
|
20
|
Spencer B, Potkar R, Metcalf J, Thrin I, Adame A, Rockenstein E, Masliah E. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease. J Biol Chem 2015; 291:1905-1920. [PMID: 26620558 DOI: 10.1074/jbc.m115.678185] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 01/07/2023] Open
Abstract
Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic.
Collapse
Affiliation(s)
| | | | - Jeff Metcalf
- From the Departments of Neuroscience and; Pathology, University of California, San Diego, California 92102
| | - Ivy Thrin
- From the Departments of Neuroscience and
| | | | | | - Eliezer Masliah
- From the Departments of Neuroscience and; Pathology, University of California, San Diego, California 92102.
| |
Collapse
|
21
|
Abstract
The gastrointestinal hormone peptide tyrosine tyrosine 3-36 (PYY(3-36)) has attained broad recognition with respect to its involvement in energy homeostasis and the control of food intake. It is mainly secreted by distal intestinal enteroendocrine L-cells in response to eating and exerts neurally mediated, paracrine and endocrine effects on various target organs. In addition to its gastrointestinal effects, PYY(3-36) has long been known to inhibit food intake. Recent closer examination of the effects of PYY(3-36) revealed that this gut-derived peptide also influences a wide spectrum of behavioral and cognitive functions that are pivotal for basic processes of perception and judgment, including central information processing, salience learning, working memory, and behavioral responding to novelty. Here, we review the effects of PYY(3-36) that go beyond food intake and provide a conceptual framework suggesting that several apparently unrelated behavioral actions of PYY(3-36) may actually reflect different manifestations of modulating the central dopamine system.
Collapse
|
22
|
Barbosa DJ, Capela JP, Feio-Azevedo R, Teixeira-Gomes A, Bastos MDL, Carvalho F. Mitochondria: key players in the neurotoxic effects of amphetamines. Arch Toxicol 2015; 89:1695-725. [PMID: 25743372 DOI: 10.1007/s00204-015-1478-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/09/2015] [Indexed: 12/21/2022]
Abstract
Amphetamines are a class of psychotropic drugs with high abuse potential, as a result of their stimulant, euphoric, emphathogenic, entactogenic, and hallucinogenic properties. Although most amphetamines are synthetic drugs, of which methamphetamine, amphetamine, and 3,4-methylenedioxymethamphetamine ("ecstasy") represent well-recognized examples, the use of natural related compounds, namely cathinone and ephedrine, has been part of the history of humankind for thousands of years. Resulting from their amphiphilic nature, these drugs can easily cross the blood-brain barrier and elicit their well-known psychotropic effects. In the field of amphetamines' research, there is a general consensus that mitochondrial-dependent pathways can provide a major understanding concerning pathological processes underlying the neurotoxicity of these drugs. These events include alterations on tricarboxylic acid cycle's enzymes functioning, inhibition of mitochondrial electron transport chain's complexes, perturbations of mitochondrial clearance mechanisms, interference with mitochondrial dynamics, as well as oxidative modifications in mitochondrial macromolecules. Additionally, other studies indicate that amphetamines-induced neuronal toxicity is closely regulated by B cell lymphoma 2 superfamily of proteins with consequent activation of caspase-mediated downstream cell death pathway. Understanding the molecular mechanisms at mitochondrial level involved in amphetamines' neurotoxicity can help in defining target pathways or molecules mediating these effects, as well as in developing putative therapeutic approaches to prevent or treat the acute- or long-lasting neuropsychiatric complications seen in human abusers.
Collapse
Affiliation(s)
- Daniel José Barbosa
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal.
| | - João Paulo Capela
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.,FP-ENAS (Unidade de Investigação UFP em energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua 9 de Abril 349, 4249-004, Porto, Portugal
| | - Rita Feio-Azevedo
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Armanda Teixeira-Gomes
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
23
|
Neasta J, Barak S, Ben Hamida S, Ron D. mTOR complex 1: a key player in neuroadaptations induced by drugs of abuse. J Neurochem 2014; 130:172-84. [PMID: 24666346 PMCID: PMC4107045 DOI: 10.1111/jnc.12725] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 12/14/2022]
Abstract
The mammalian (or mechanistic) target of rapamycin (mTOR) complex 1 (mTORC1) is a serine and threonine kinase that regulates cell growth, survival, and proliferation. mTORC1 is a master controller of the translation of a subset of mRNAs. In the central nervous system mTORC1 plays a crucial role in mechanisms underlying learning and memory by controlling synaptic protein synthesis. Here, we review recent evidence suggesting that the mTORC1 signaling pathway promotes neuroadaptations following exposure to a diverse group of drugs of abuse including stimulants, cannabinoids, opiates, and alcohol. We further describe potential molecular mechanisms by which drug-induced mTORC1 activation may alter brain functions. Finally, we propose that mTORC1 is a focal point shared by drugs of abuse to mediate drug-related behaviors such as reward seeking and excessive drug intake, and offer future directions to decipher the contribution of the kinase to mechanisms underlying addiction. Recent studies suggesting that exposure to diverse classes of drugs of abuse as well as exposure to drug-associated memories lead to mTORC1 kinase activation in the limbic system. In turn, mTORC1 controls the onset and the maintenance of pathological neuroadaptions that underlie several features of drug addiction such as drug seeking and relapse. Therefore, we propose that targeting mTORC1 and its effectors is a promising strategy to treat drug disorders.
Collapse
Affiliation(s)
- Jeremie Neasta
- Department of Neurology, University of California, San Francisco, California, 94143
- The Gallo Research Center, University of California, San Francisco, California, 94143
| | - Segev Barak
- Department of Neurology, University of California, San Francisco, California, 94143
- The Gallo Research Center, University of California, San Francisco, California, 94143
| | - Sami Ben Hamida
- Department of Neurology, University of California, San Francisco, California, 94143
- The Gallo Research Center, University of California, San Francisco, California, 94143
| | - Dorit Ron
- Department of Neurology, University of California, San Francisco, California, 94143
- The Gallo Research Center, University of California, San Francisco, California, 94143
| |
Collapse
|
24
|
Neuronal remodeling during metamorphosis is regulated by the alan shepard (shep) gene in Drosophila melanogaster. Genetics 2014; 197:1267-83. [PMID: 24931409 DOI: 10.1534/genetics.114.166181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptidergic neurons are a group of neuronal cells that synthesize and secrete peptides to regulate a variety of biological processes. To identify genes controlling the development and function of peptidergic neurons, we conducted a screen of 545 splice-trap lines and identified 28 loci that drove expression in peptidergic neurons when crossed to a GFP reporter transgene. Among these lines, an insertion in the alan shepard (shep) gene drove expression specifically in most peptidergic neurons. shep transcripts and SHEP proteins were detected primarily and broadly in the central nervous system (CNS) in embryos, and this expression continued into the adult stage. Loss of shep resulted in late pupal lethality, reduced adult life span, wing expansion defects, uncoordinated adult locomotor activities, rejection of males by virgin females, and reduced neuropil area and reduced levels of multiple presynaptic markers throughout the adult CNS. Examination of the bursicon neurons in shep mutant pharate adults revealed smaller somata and fewer axonal branches and boutons, and all of these cellular phenotypes were fully rescued by expression of the most abundant wild-type shep isoform. In contrast to shep mutant animals at the pharate adult stage, shep mutant larvae displayed normal bursicon neuron morphologies. Similarly, shep mutant adults were uncoordinated and weak, while shep mutant larvae displayed largely, although not entirely, normal locomotor behavior. Thus, shep played an important role in the metamorphic development of many neurons.
Collapse
|
25
|
Yin B, Meck WH. Comparison of interval timing behaviour in mice following dorsal or ventral hippocampal lesions with mice having δ-opioid receptor gene deletion. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120466. [PMID: 24446500 DOI: 10.1098/rstb.2012.0466] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mice with cytotoxic lesions of the dorsal hippocampus (DH) underestimated 15 s and 45 s target durations in a bi-peak procedure as evidenced by proportional leftward shifts of the peak functions that emerged during training as a result of decreases in both 'start' and 'stop' times. In contrast, mice with lesions of the ventral hippocampus (VH) displayed rightward shifts that were immediately present and were largely limited to increases in the 'stop' time for the 45 s target duration. Moreover, the effects of the DH lesions were congruent with the scalar property of interval timing in that the 15 s and 45 s functions superimposed when plotted on a relative timescale, whereas the effects of the VH lesions violated the scalar property. Mice with DH lesions also showed enhanced reversal learning in comparison to control and VH lesioned mice. These results are compared with the timing distortions observed in mice lacking δ-opioid receptors (Oprd1(-/-)) which were similar to mice with DH lesions. Taken together, these results suggest a balance between hippocampal-striatal interactions for interval timing and demonstrate possible functional dissociations along the septotemporal axis of the hippocampus in terms of motivation, timed response thresholds and encoding in temporal memory.
Collapse
Affiliation(s)
- Bin Yin
- Department of Psychology and Neuroscience, Duke University, , Durham, NC 27708, USA
| | | |
Collapse
|
26
|
Borbély E, Scheich B, Helyes Z. Neuropeptides in learning and memory. Neuropeptides 2013; 47:439-50. [PMID: 24210137 DOI: 10.1016/j.npep.2013.10.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to complete the preclinical studies and decide if any of the above described targets could be appropriate for clinical investigations.
Collapse
Affiliation(s)
- Eva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | | | | |
Collapse
|
27
|
Methamphetamine and Parkinson's disease. PARKINSONS DISEASE 2013; 2013:308052. [PMID: 23476887 PMCID: PMC3582059 DOI: 10.1155/2013/308052] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/22/2012] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder predominantly affecting the elderly. The aetiology of the disease is not known, but age and environmental factors play an important role. Although more than a dozen gene mutations associated with familial forms of Parkinson's disease have been described, fewer than 10% of all cases can be explained by genetic abnormalities. The molecular basis of Parkinson's disease is the loss of dopamine in the basal ganglia (caudate/putamen) due to the degeneration of dopaminergic neurons in the substantia nigra, which leads to the motor impairment characteristic of the disease. Methamphetamine is the second most widely used illicit drug in the world. In rodents, methamphetamine exposure damages dopaminergic neurons in the substantia nigra, resulting in a significant loss of dopamine in the striatum. Biochemical and neuroimaging studies in human methamphetamine users have shown decreased levels of dopamine and dopamine transporter as well as prominent microglial activation in the striatum and other areas of the brain, changes similar to those observed in PD patients. Consistent with these similarities, recent epidemiological studies have shown that methamphetamine users are almost twice as likely as non-users to develop PD, despite the fact that methamphetamine abuse and PD have distinct symptomatic profiles.
Collapse
|