1
|
Mizutani Y, Kinoshita M, Lin YC, Fukaya S, Kato S, Hisano T, Hida H, Iwata S, Saitoh S, Iwata O. Temporal inversion of the acid-base equilibrium in newborns: an observational study. PeerJ 2021; 9:e11240. [PMID: 33954050 PMCID: PMC8052977 DOI: 10.7717/peerj.11240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background A considerable fraction of newborn infants experience hypoxia-ischaemia and metabolic acidosis at birth. However, little is known regarding the biological response of newborn infants to the pH drift from the physiological equilibrium. The aim of this study was to investigate the relationship between the pH drift at birth and postnatal acid-base regulation in newborn infants. Methods Clinical information of 200 spontaneously breathing newborn infants hospitalised at a neonatal intensive care centre were reviewed. Clinical variables associated with venous blood pH on days 5-7 were assessed. Results The higher blood pH on days 5-7 were explained by lower cord blood pH (-0.131, -0.210 to -0.052; regression coefficient, 95% confidence interval), greater gestational age (0.004, 0.002 to 0.005) and lower partial pressure of carbon dioxide on days 5-7 (-0.005, -0.006 to -0.004) (adjusted for sex, postnatal age and lactate on days 5-7). Conclusion In relatively stable newborn infants, blood pH drift from the physiological equilibrium at birth might trigger a system, which reverts and over-corrects blood pH within the first week of life. Given that the infants within the study cohort was spontaneously breathing, the observed phenomenon might be a common reaction of newborn infants to pH changes at birth.
Collapse
Affiliation(s)
- Yuko Mizutani
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Masahiro Kinoshita
- Department of Paediatrics and Child Health, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yung-Chieh Lin
- Department of Pediatrics, National Cheng-Kung University, Tainan, Taiwan
| | - Satoko Fukaya
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shin Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Tadashi Hisano
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sachiko Iwata
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Osuke Iwata
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Htun Y, Nakamura S, Kusaka T. Hydrogen and therapeutic gases for neonatal hypoxic-ischemic encephalopathy: potential neuroprotective adjuncts in translational research. Pediatr Res 2021; 89:753-759. [PMID: 32505123 DOI: 10.1038/s41390-020-0998-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022]
Abstract
Numerous studies have examined the potential use of therapeutic gases for the treatment of various neurological disorders. Hydrogen gas, a promising neuroprotective agent, has been a focus of study due to its potent antioxidative properties. In translational research into adult diseases, hydrogen has been shown to be neuroprotective in disorders such as cerebral ischemia and traumatic brain injury, and in neurodegenerative diseases such as Alzheimer's disease. Animal and human studies have verified the safety and feasibility of molecular hydrogen. However, despite extensive research on its efficacy in adults, only a few studies have investigated its application in pediatric and neonatal medicine. Neonatal hypoxic-ischemic encephalopathy (HIE) is characterized by damage to neurons and other cells of the nervous system. One of the major contributing factors is excessive exposure to oxidative stress. Current research interest in HIE is shifting toward new neuroprotective agents, as single agents or as adjuncts to therapeutic hypothermia. Here, we review therapeutic gases, particularly hydrogen, and their potentials and limitations in the treatment of HIE in newborns. IMPACT: Translational animal models of neonatal HIE are a current focus of research into the therapeutic usefulness of various gases. Hydrogen ventilation as a single agent or in combination with therapeutic hypothermia shows short- and long-term neuroprotection in neonatal translational HIE models. The optimal target severity for therapeutic interventions should be well established to improve outcomes.
Collapse
Affiliation(s)
- Yinmon Htun
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan.,Graduate School of Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| |
Collapse
|
3
|
Koehler RC, Yang ZJ, Lee JK, Martin LJ. Perinatal hypoxic-ischemic brain injury in large animal models: Relevance to human neonatal encephalopathy. J Cereb Blood Flow Metab 2018; 38:2092-2111. [PMID: 30149778 PMCID: PMC6282216 DOI: 10.1177/0271678x18797328] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Perinatal hypoxia-ischemia resulting in death or lifelong disabilities remains a major clinical disorder. Neonatal models of hypoxia-ischemia in rodents have enhanced our understanding of cellular mechanisms of neural injury in developing brain, but have limitations in simulating the range, accuracy, and physiology of clinical hypoxia-ischemia and the relevant systems neuropathology that contribute to the human brain injury pattern. Large animal models of perinatal hypoxia-ischemia, such as partial or complete asphyxia at the time of delivery of fetal monkeys, umbilical cord occlusion and cerebral hypoperfusion at different stages of gestation in fetal sheep, and severe hypoxia and hypoperfusion in newborn piglets, have largely overcome these limitations. In monkey, complete asphyxia produces preferential injury to cerebellum and primary sensory nuclei in brainstem and thalamus, whereas partial asphyxia produces preferential injury to somatosensory and motor cortex, basal ganglia, and thalamus. Mid-gestational fetal sheep provide a valuable model for studying vulnerability of progenitor oligodendrocytes. Hypoxia followed by asphyxia in newborn piglets replicates the systems injury seen in term newborns. Efficacy of post-insult hypothermia in animal models led to the success of clinical trials in term human neonates. Large animal models are now being used to explore adjunct therapy to augment hypothermic neuroprotection.
Collapse
Affiliation(s)
- Raymond C Koehler
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Zeng-Jin Yang
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer K Lee
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.,2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA
| | - Lee J Martin
- 2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Pathology, Division of Neuropathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Sun S, Li H, Chen J, Qian Q. Lactic Acid: No Longer an Inert and End-Product of Glycolysis. Physiology (Bethesda) 2018; 32:453-463. [PMID: 29021365 DOI: 10.1152/physiol.00016.2017] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
For decades, lactic acid has been considered a dead-end product of glycolysis. Research in the last 20+ years has shown otherwise. Through its transporters (MCTs) and receptor (GPR81), lactic acid plays a key role in multiple cellular processes, including energy regulation, immune tolerance, memory formation, wound healing, ischemic tissue injury, and cancer growth and metastasis. We summarize key findings of lactic acid signaling, functions, and many remaining questions.
Collapse
Affiliation(s)
- Shiren Sun
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xian, China
| | - Heng Li
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; and
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; and
| | - Qi Qian
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
5
|
Ueda Y, Bando Y, Misumi S, Ogawa S, Ishida A, Jung CG, Shimizu T, Hida H. Alterations of Both Dendrite Morphology and Weaker Electrical Responsiveness in the Cortex of Hip Area Occur Before Rearrangement of the Motor Map in Neonatal White Matter Injury Model. Front Neurol 2018; 9:443. [PMID: 29971036 PMCID: PMC6018077 DOI: 10.3389/fneur.2018.00443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-ischemia (H-I) in rats at postnatal day 3 causes disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex without apparent neuronal loss, and shows mild hindlimb dysfunction with imbalanced motor coordination. However, the mechanisms by which mild motor dysfunction is induced without loss of cortical neurons are currently unclear. To reveal the mechanisms underlying mild motor dysfunction in neonatal H-I model, electrical responsiveness and dendrite morphology in the sensorimotor cortex were investigated at 10 weeks of age. Responses to intracortical microstimulation (ICMS) revealed that the cortical motor map was significantly changed in this model. The cortical area related to hip joint movement was reduced, and the area related to trunk movement was increased. Sholl analysis in Golgi staining revealed that layer I–III neurons on the H-I side had more dendrite branches compared with the contralateral side. To investigate whether changes in the motor map and morphology appeared at earlier stages, ICMS and Sholl analysis were also performed at 5 weeks of age. The minimal ICMS current to evoke twitches of the hip area was higher on the H-I side, while the motor map was unchanged. Golgi staining revealed more dendrite branches in layer I–III neurons on the H-I side. These results revealed that alterations of both dendrite morphology and ICMS threshold of the hip area occurred before the rearrangement of the motor map in the neonatal H-I model. They also suggest that altered dendritic morphology and altered ICMS responsiveness may be related to mild motor dysfunction in this model.
Collapse
Affiliation(s)
- Yoshitomo Ueda
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Japan
| | - Sachiyo Misumi
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shino Ogawa
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimasa Ishida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
6
|
Ganesana M, Venton BJ. Early changes in transient adenosine during cerebral ischemia and reperfusion injury. PLoS One 2018; 13:e0196932. [PMID: 29799858 PMCID: PMC5969733 DOI: 10.1371/journal.pone.0196932] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Adenosine is an important neuromodulator in the central nervous system, and tissue adenosine levels increase during ischemic events, attenuating excitotoxic neuronal injury. Recently, our lab developed an electrochemical fast-scan cyclic voltammetry (FSCV) method that identified rapid, spontaneous changes in adenosine concentrations that last only about 3 seconds. Here, we investigated the effects of cerebral ischemia and reperfusion on the concentration and frequency of transient adenosine release in the caudate-putamen. In anesthetized rats, data were collected for four hours: two hours of normoxia, 30 min of cerebral ischemia induced by bilateral common carotid artery occlusion, and 90 min of reperfusion. Transient adenosine release was increased during the cerebral ischemia period and remained elevated during reperfusion. The total number of adenosine transients increased by 52% during cerebral ischemia and reperfusion compared to normoxia. The concentration of adenosine per event did not increase but the cumulative adenosine concentration during cerebral ischemia and reperfusion increased by 53% because of the higher frequency of events. Further, we evaluated the role of A2A antagonist, SCH442416, a putative neuroprotective agent to affect adenosine transients. SCH442416 significantly decreased the transient frequency during cerebral ischemia-reperfusion by 27% and the cumulative concentration by 31%. Our results demonstrate that this mode of rapid adenosine release increases during early cerebral ischemia-reperfusion injury. Rapid adenosine release could provide fast, local neuromodulation and neuroprotection during cerebral ischemia.
Collapse
Affiliation(s)
| | - B Jill Venton
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States of America
| |
Collapse
|
7
|
Aridas JDS, Yawno T, Sutherland AE, Nitsos I, Ditchfield M, Wong FY, Hunt RW, Fahey MC, Malhotra A, Wallace EM, Jenkin G, Miller SL. Systemic and transdermal melatonin administration prevents neuropathology in response to perinatal asphyxia in newborn lambs. J Pineal Res 2018; 64:e12479. [PMID: 29464766 PMCID: PMC5947141 DOI: 10.1111/jpi.12479] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/06/2018] [Indexed: 01/19/2023]
Abstract
Perinatal asphyxia remains a principal cause of infant mortality and long-term neurological morbidity, particularly in low-resource countries. No neuroprotective interventions are currently available. Melatonin (MLT), a potent antioxidant, anti-inflammatory and antiapoptotic agent, offers promise as an intravenous (IV) or transdermal therapy to protect the brain. We aimed to determine the effect of melatonin (IV or transdermal patch) on neuropathology in a lamb model of perinatal asphyxia. Asphyxia was induced in newborn lambs via umbilical cord occlusion at birth. Animals were randomly allocated to melatonin commencing 30 minutes after birth (60 mg in 24 hours; IV or transdermal patch). Brain magnetic resonance spectroscopy (MRS) was undertaken at 12 and 72 hours. Animals (control n = 9; control+MLT n = 6; asphyxia n = 16; asphyxia+MLT [IV n = 14; patch n = 4]) were euthanised at 72 hours, and cerebrospinal fluid (CSF) and brains were collected for analysis. Asphyxia resulted in severe acidosis (pH 6.9 ± 0.0; lactate 9 ± 2 mmol/L) and altered determinants of encephalopathy. MRS lactate:N-acetyl aspartate ratio was 2.5-fold higher in asphyxia lambs compared with controls at 12 hours and 3-fold higher at 72 hours (P < .05). Melatonin prevented this rise (3.5-fold reduced vs asphyxia; P = .02). Asphyxia significantly increased brain white and grey matter apoptotic cell death (activated caspase-3), lipid peroxidation (4HNE) and neuroinflammation (IBA-1). These changes were significantly mitigated by both IV and patch melatonin. Systemic or transdermal neonatal melatonin administration significantly reduces the neuropathology and encephalopathy signs associated with perinatal asphyxia. A simple melatonin patch, administered soon after birth, may improve outcome in infants affected by asphyxia, especially in low-resource settings.
Collapse
Affiliation(s)
- James D. S. Aridas
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
| | - Tamara Yawno
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVic.Australia
| | - Amy E. Sutherland
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
| | - Ilias Nitsos
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVic.Australia
| | | | - Flora Y. Wong
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Monash Children's HospitalMonash HealthClaytonVic.Australia
| | - Rod W. Hunt
- Murdoch Children's Research InstituteMelbourneVic.Australia
| | - Michael C. Fahey
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Monash Children's HospitalMonash HealthClaytonVic.Australia
| | - Atul Malhotra
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Monash Children's HospitalMonash HealthClaytonVic.Australia
| | - Euan M. Wallace
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVic.Australia
| | - Graham Jenkin
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVic.Australia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVic.Australia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVic.Australia
| |
Collapse
|
8
|
Ueda Y, Misumi S, Suzuki M, Ogawa S, Nishigaki R, Ishida A, Jung CG, Hida H. Disorganization of Oligodendrocyte Development in the Layer II/III of the Sensorimotor Cortex Causes Motor Coordination Dysfunction in a Model of White Matter Injury in Neonatal Rats. Neurochem Res 2018; 43:136-146. [DOI: 10.1007/s11064-017-2352-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/21/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
|
9
|
Immediate Remote Ischemic Postconditioning Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5763743. [PMID: 27379176 PMCID: PMC4917706 DOI: 10.1155/2016/5763743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/21/2016] [Accepted: 03/27/2016] [Indexed: 11/18/2022]
Abstract
Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention that could be administered as an alternative to cooling in cases of perinatal hypoxia-ischemia (HI). In the current study we hypothesized that RIPostC in the piglet model of birth asphyxia confers protection by reducing nitrosative stress and subsequent nitrotyrosine formation, as well as having an effect on glial immunoreactivity. Postnatal day 1 (P1) piglets underwent HI brain injury and were randomised to HI (control) or HI + RIPostC. Immunohistochemistry assessment 48 hours after HI revealed a significant decrease in brain nitrotyrosine deposits in the RIPostC-treated group (p = 0.02). This was accompanied by a significant increase in eNOS expression (p < 0.0001) and decrease in iNOS (p = 0.010), with no alteration in nNOS activity. Interestingly, RIPostC treatment was associated with a significant increase in GFAP (p = 0.002) and IBA1 (p = 0.006), markers of astroglial and microglial activity, respectively. The current study demonstrates a beneficial effect of RIPostC therapy in the preclinical piglet model of neonatal asphyxia, which appears to be mediated by modulation of nitrosative stress, despite glial activation.
Collapse
|
10
|
Azzopardi D, Robertson NJ, Bainbridge A, Cady E, Charles-Edwards G, Deierl A, Fagiolo G, Franks NP, Griffiths J, Hajnal J, Juszczak E, Kapetanakis B, Linsell L, Maze M, Omar O, Strohm B, Tusor N, Edwards AD. Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial. Lancet Neurol 2015; 15:145-153. [PMID: 26708675 PMCID: PMC4710577 DOI: 10.1016/s1474-4422(15)00347-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/03/2015] [Accepted: 11/16/2015] [Indexed: 11/15/2022]
Abstract
Background Moderate cooling after birth asphyxia is associated with substantial reductions in death and disability, but additional therapies might provide further benefit. We assessed whether the addition of xenon gas, a promising novel therapy, after the initiation of hypothermia for birth asphyxia would result in further improvement. Methods Total Body hypothermia plus Xenon (TOBY-Xe) was a proof-of-concept, randomised, open-label, parallel-group trial done at four intensive-care neonatal units in the UK. Eligible infants were 36–43 weeks of gestational age, had signs of moderate to severe encephalopathy and moderately or severely abnormal background activity for at least 30 min or seizures as shown by amplitude-integrated EEG (aEEG), and had one of the following: Apgar score of 5 or less 10 min after birth, continued need for resuscitation 10 min after birth, or acidosis within 1 h of birth. Participants were allocated in a 1:1 ratio by use of a secure web-based computer-generated randomisation sequence within 12 h of birth to cooling to a rectal temperature of 33·5°C for 72 h (standard treatment) or to cooling in combination with 30% inhaled xenon for 24 h started immediately after randomisation. The primary outcomes were reduction in lactate to N-acetyl aspartate ratio in the thalamus and in preserved fractional anisotropy in the posterior limb of the internal capsule, measured with magnetic resonance spectroscopy and MRI, respectively, within 15 days of birth. The investigator assessing these outcomes was masked to allocation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00934700, and with ISRCTN, as ISRCTN08886155. Findings The study was done from Jan 31, 2012, to Sept 30, 2014. We enrolled 92 infants, 46 of whom were randomly assigned to cooling only and 46 to xenon plus cooling. 37 infants in the cooling only group and 41 in the cooling plus xenon group underwent magnetic resonance assessments and were included in the analysis of the primary outcomes. We noted no significant differences in lactate to N-acetyl aspartate ratio in the thalamus (geometric mean ratio 1·09, 95% CI 0·90 to 1·32) or fractional anisotropy (mean difference −0·01, 95% CI −0·03 to 0·02) in the posterior limb of the internal capsule between the two groups. Nine infants died in the cooling group and 11 in the xenon group. Two adverse events were reported in the xenon group: subcutaneous fat necrosis and transient desaturation during the MRI. No serious adverse events were recorded. Interpretation Administration of xenon within the delayed timeframe used in this trial is feasible and apparently safe, but is unlikely to enhance the neuroprotective effect of cooling after birth asphyxia. Funding UK Medical Research Council.
Collapse
Affiliation(s)
- Denis Azzopardi
- Centre for the Developing Brain, Division of Imaging Sciences and Bioengineering, King's College London, London, UK.
| | | | | | - Ernest Cady
- Faculty of Engineering Science, University College London, London, UK
| | | | - Aniko Deierl
- Division of Neonatology, Imperial College Healthcare NHS Trust, London, UK
| | - Gianlorenzo Fagiolo
- Centre for the Developing Brain, Division of Imaging Sciences and Bioengineering, King's College London, London, UK
| | - Nicholas P Franks
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, UK
| | - James Griffiths
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Joseph Hajnal
- Centre for the Developing Brain, Division of Imaging Sciences and Bioengineering, King's College London, London, UK
| | - Edmund Juszczak
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Basil Kapetanakis
- Centre for the Developing Brain, Division of Imaging Sciences and Bioengineering, King's College London, London, UK
| | - Louise Linsell
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Mervyn Maze
- Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Omar Omar
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Brenda Strohm
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nora Tusor
- Centre for the Developing Brain, Division of Imaging Sciences and Bioengineering, King's College London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Bioengineering, King's College London, London, UK
| |
Collapse
|
11
|
Corrigendum. J Neurochem 2015; 134:182. [DOI: 10.1111/jnc.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Rewarming from therapeutic hypothermia induces cortical neuron apoptosis in a swine model of neonatal hypoxic-ischemic encephalopathy. J Cereb Blood Flow Metab 2015; 35:781-93. [PMID: 25564240 PMCID: PMC4420851 DOI: 10.1038/jcbfm.2014.245] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/08/2022]
Abstract
The consequences of therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy are poorly understood. Adverse effects from suboptimal rewarming could diminish neuroprotection from hypothermia. Therefore, we tested whether rewarming is associated with apoptosis. Piglets underwent hypoxia-asphyxia followed by normothermic or hypothermic recovery at 2 hours. Hypothermic groups were divided into those with no rewarming, rewarming at 0.5 °C/hour, or rewarming at 4 °C/hour. Neurodegeneration at 29 hours was assessed by hematoxylin and eosin staining, TUNEL assay, and immunoblotting for cleaved caspase-3. Rewarmed piglets had more apoptosis in motor cortex than did those that remained hypothermic after hypoxia-asphyxia. Apoptosis in piriform cortex was greater in hypoxic-asphyxic, rewarmed piglets than in naive/sham piglets. Caspase-3 inhibitor suppressed apoptosis with rewarming. Rapidly rewarmed piglets had more caspase-3 cleavage in cerebral cortex than did piglets that remained hypothermic or piglets that were rewarmed slowly. We conclude that rewarming from therapeutic hypothermia can adversely affect the newborn brain by inducing apoptosis through caspase mechanisms.
Collapse
|
13
|
Abstract
BACKGROUND Metabolic acidosis is associated with impaired cellular function. This has been attributed to the accompanying reduction in intracellular and interstitial pH of the myocardium. Recent studies suggest that activation of the cellular Na(+)-H(+) exchanger NHE1 might contribute to myocardial dysfunction. This review examines the experimental evidence which supports the role of NHE1 in the genesis of acidosis-induced cellular dysfunction, the benefits of its inhibition, and the type of acidosis that might benefit from therapy. SUMMARY Information was obtained by searching MEDLINE for articles published between 1969 and 2013 using the terms: NHE1, metabolic acidosis, lactic acidosis, ischemia-reperfusion, shock, resuscitation, high anion gap acidosis, and non-gap acidosis. Each article was also reviewed for additional suitable references. Nineteen manuscripts published between 2002 and 2013 assessed the impact of inhibition of NHE1 on cellular function. They revealed that NHE1 is activated with metabolic acidosis associated with hypoxia, hypoperfusion, hemorrhagic shock, and sepsis. This was associated with a rise in cellular sodium and calcium and cardiac dysfunction including reduced contractility and a predisposition to cardiac arrhythmias. Inhibition of NHE1 with specific inhibitors improved cardiac function, reduced blood and tissue levels of proinflammatory cytokines, and decreased mortality. Key Message: These results suggest that use of inhibitors of NHE1 might be worthwhile in the treatment of some types of acute metabolic acidosis, specifically the lactic acidosis associated with hypoxia, hemorrhagic shock, and cardiac arrest. Its potential role in the treatment of other forms of acute metabolic acidosis remains to be determined.
Collapse
Affiliation(s)
- Dongmei Wu
- Department of Research, Mount Sinai Medical Center, Miami, Fla., USA
| | | |
Collapse
|
14
|
Zhang Q, Yuan L, Liu D, Wang J, Wang S, Zhang Q, Gong Y, Liu H, Hao A, Wang Z. Hydrogen sulfide attenuates hypoxia-induced neurotoxicity through inhibiting microglial activation. Pharmacol Res 2014; 84:32-44. [DOI: 10.1016/j.phrs.2014.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
|
15
|
Uria-Avellanal C, Robertson NJ. Na⁺/H⁺ exchangers and intracellular pH in perinatal brain injury. Transl Stroke Res 2014; 5:79-98. [PMID: 24452957 PMCID: PMC3913853 DOI: 10.1007/s12975-013-0322-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022]
Abstract
Encephalopathy consequent on perinatal hypoxia–ischemia occurs in 1–3 per 1,000 term births in the UK and frequently leads to serious and tragic consequences that devastate lives and families, with huge financial burdens for society. Although the recent introduction of cooling represents a significant advance, only 40 % survive with normal neurodevelopmental function. There is thus a significant unmet need for novel, safe, and effective therapies to optimize brain protection following brain injury around birth. The Na+/H+ exchanger (NHE) is a membrane protein present in many mammalian cell types. It is involved in regulating intracellular pH and cell volume. NHE1 is the most abundant isoform in the central nervous system and plays a role in cerebral damage after hypoxia–ischemia. Excessive NHE activation during hypoxia–ischemia leads to intracellular Na+ overload, which subsequently promotes Ca2+ entry via reversal of the Na+/Ca2+ exchanger. Increased cytosolic Ca2+ then triggers the neurotoxic cascade. Activation of NHE also leads to rapid normalization of pHi and an alkaline shift in pHi. This rapid recovery of brain intracellular pH has been termed pH paradox as, rather than causing cells to recover, this rapid return to normal and overshoot to alkaline values is deleterious to cell survival. Brain pHi changes are closely involved in the control of cell death after injury: an alkalosis enhances excitability while a mild acidosis has the opposite effect. We have observed a brain alkalosis in 78 babies with neonatal encephalopathy serially studied using phosphorus-31 magnetic resonance spectroscopy during the first year after birth (151 studies throughout the year including 56 studies of 50 infants during the first 2 weeks after birth). An alkaline brain pHi was associated with severely impaired outcome; the degree of brain alkalosis was related to the severity of brain injury on MRI and brain lactate concentration; and a persistence of an alkaline brain pHi was associated with cerebral atrophy on MRI. Experimental animal models of hypoxia–ischemia show that NHE inhibitors are neuroprotective. Here, we review the published data on brain pHi in neonatal encephalopathy and the experimental studies of NHE inhibition and neuroprotection following hypoxia–ischemia.
Collapse
Affiliation(s)
- Cristina Uria-Avellanal
- Neonatology, Institute for Women's Health, University College London, 74 Huntley Street, 4th floor, Room 401, London, WC1E 6AU, UK
| | | |
Collapse
|
16
|
Williams SR, Hausmann L, Schulz JB. Molecular imaging and its applications: visualization beyond imagination. J Neurochem 2013; 127:575-7. [DOI: 10.1111/jnc.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Stephen R. Williams
- Imaging Science and Biomedical Engineering; University of Manchester; Manchester UK
| | - Laura Hausmann
- Department of Neurology; RWTH Aachen University Hospital; Aachen Germany
| | - Jörg B. Schulz
- Department of Neurology; RWTH Aachen University Hospital; Aachen Germany
| |
Collapse
|
17
|
Wang Z, Liu D, Zhan J, Xie K, Wang X, Xian X, Gu J, Chen W, Hao A. Melatonin improves short and long-term neurobehavioral deficits and attenuates hippocampal impairments after hypoxia in neonatal mice. Pharmacol Res 2013; 76:84-97. [DOI: 10.1016/j.phrs.2013.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/27/2022]
|
18
|
Bainbridge A, Tachtsidis I, Faulkner SD, Price D, Zhu T, Baer E, Broad KD, Thomas DL, Cady EB, Robertson NJ, Golay X. Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy. Neuroimage 2013; 102 Pt 1:173-83. [PMID: 23959202 PMCID: PMC4229502 DOI: 10.1016/j.neuroimage.2013.08.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/12/2013] [Accepted: 08/09/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Multimodal measurements combining broadband near-infrared spectroscopy (NIRS) and phosphorus magnetic resonance spectroscopy ((31)P MRS) assessed associations between changes in the oxidation state of cerebral mitochondrial cytochrome-c-oxidase (Δ[oxCCO]) and (31)P metabolite peak-area ratios during and after transient cerebral hypoxia-ischemia (HI) in the newborn piglet. METHODS Twenty-four piglets (aged<24 h) underwent transient HI (inspired oxygen fraction 9% and bilateral carotid artery occlusion for ~20 min). Whole-brain (31)P MRS and NIRS data were acquired every minute. Inorganic phosphate (Pi)/epp, phosphocreatine (PCr)/epp, and total nucleotide triphosphate (NTP)/epp were measured by (31)P MRS and were plotted against Δ[oxCCO] during HI and recovery (epp=exchangeable phosphate pool=Pi+PCr+2γ-NTP+β-NTP). RESULTS During HI Δ[oxCCO], PCr/epp and NTP/epp declined and Pi/epp increased. Significant correlations were seen between (31)P ratios and Δ[oxCCO]; during HI a threshold point was identified where the relationship between Δ[oxCCO] and both NTP/epp and Pi/epp changed significantly. Outcome at 48 h related to recovery of Δ[oxCCO] and (31)P ratios 1h post-HI (survived: 1-h NTP/epp 0.22 ± 0.02, Δ[oxCCO] -0.29 ± 0.50 μM; died: 1-h NTP/epp 0.10 ± 0.04, Δ[oxCCO] -2.41 ± 1.48 μM). CONCLUSIONS Both lowered Δ[oxCCO] and NTP/epp 1h post-HI indicated mitochondrial impairment. Animals dying before 48 h had slower recovery of both Δ[oxCCO] and (31)P ratios by 1 h after HI.
Collapse
Affiliation(s)
- A Bainbridge
- Medical Physics and Bioengineering, UCLH NHS Foundation Trust, London NW1 2BU, UK.
| | - I Tachtsidis
- Medical Physics and Bioengineering, University College London, WC1E 6BT, UK
| | - S D Faulkner
- Institute for Women's Health, University College London, WC1E 6AU, UK
| | - D Price
- Medical Physics and Bioengineering, UCLH NHS Foundation Trust, London NW1 2BU, UK
| | - T Zhu
- Medical Physics and Bioengineering, University College London, WC1E 6BT, UK
| | - E Baer
- Medical Physics and Bioengineering, University College London, WC1E 6BT, UK
| | - K D Broad
- Institute for Women's Health, University College London, WC1E 6AU, UK
| | - D L Thomas
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - E B Cady
- Medical Physics and Bioengineering, UCLH NHS Foundation Trust, London NW1 2BU, UK
| | - N J Robertson
- Institute for Women's Health, University College London, WC1E 6AU, UK
| | - X Golay
- Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
19
|
Avolio E, Facciolo RM, Alò R, Mele M, Carelli A, Canonaco A, Mosciaro L, Talani G, Biggio G, Sanna E, Mahata SK, Canonaco M. Expression variations of chromogranin A and α1,2,4 GABA(A)Rs in discrete limbic and brainstem areas rescue cardiovascular alterations. Neurosci Res 2013; 77:8-15. [PMID: 23916832 DOI: 10.1016/j.neures.2013.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 12/21/2022]
Abstract
Recent interferences of hemodynamic functions via modified brain neuronal mechanisms have proven to be major causes of dementia and sleeping disorders. In this work, cerebral expression differences of the neuroactive vesicular chromogranin A (CgA) and distinct α GABA(A)R subunits were detected in the facultative hibernating hamster. In particular, damaged neuronal fields of hypotensive torpor (TORP) state were correlated to elevated CgA and GABA(A)R α1, α4 mRNA levels in the paraventricular hypothalamic nucleus (PVN), central amygdalar nucleus (CeA) plus solitary tractus nucleus (NTS). Conversely, few neurodegeneration signals of hypertensive arousal (AROU) state, accounted for mostly lower CgA levels in the same areas. This state also provided increased α2-containing sites in amygdala, hippocampal and NTS neurons together with elevated α4-containing receptors in the periventricular hypothalamic nucleus (Pe). Interestingly in our hibernating model, CgA appeared to preferentially feature inhibitory neurosignals as indicated by preliminary perfusion of amygdalar sites with its highly specific antihypertensive derived peptide (catestatin) promoting GABA-dependent sIPSCs. Overall, evident neuronal damages plus altered expression capacities of CgA and α1-, α2-, α4-GABA(A)Rs in CeA, Pe, PVN as well as NTS during both hibernating states corroborate for the first time key molecular switching events guaranteeing useful cardiovascular rescuing abilities of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ennio Avolio
- Comparative Neuroanatomy Laboratory, University of Calabria, Ponte P. Bucci 4B, 87030 Arcavacata di Rende, Cosenza, Italy; Health Center srl, via Alimena 6, 87100 Cosenza, Italy; VA San Diego Healthcare System/Department of Medicine, University of California-San Diego, La Jolla, CA 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|