1
|
Wang L, Li C, Hao X, Rycus P, Tonna JE, Alexander P, Fan E, Wang H, Yang F, Hou X. Percutaneous cannulation is associated with lower rate of severe neurological complication in femoro-femoral ECPR: results from the Extracorporeal Life Support Organization Registry. Ann Intensive Care 2023; 13:77. [PMID: 37646841 PMCID: PMC10469150 DOI: 10.1186/s13613-023-01174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Percutaneous cannulation is now accepted as the first-line strategy for extracorporeal cardiopulmonary resuscitation (ECPR) in adults. However, previous studies comparing percutaneous cannulation to surgical cannulation have been limited by small sample size and single-center settings. This study aimed to compare in-hospital outcomes in cardiac arrest (CA) patients who received femoro-femoral ECPR with percutaneous vs surgical cannulation. METHODS Adults with refractory CA treated with percutaneous (percutaneous group) or surgical (surgical group) femoro-femoral ECPR between January 2008 and December 2019 were extracted from the international Extracorporeal Life Support Organization registry. The primary outcome was severe neurological complication. Multivariable logistic regression analyses were performed to assess the association between percutaneous cannulation and in-hospital outcomes. RESULTS Among 3575 patients meeting study inclusion, 2749 (77%) underwent percutaneous cannulation. The proportion of patients undergoing percutaneous cannulation increased from 18% to 89% over the study period (p < 0.001 for trend). Severe neurological complication (13% vs 19%; p < 0.001) occurred less frequently in the percutaneous group compared to the surgical group. In adjusted analyses, percutaneous cannulation was independently associated with lower rate of severe neurological complication (odds ratio [OR] 0.62; 95% CI 0.46-0.83; p = 0.002), similar rates of in-hospital mortality (OR 0.93; 95% CI 0.73-1.17; p = 0.522), limb ischemia (OR 0.84; 95% CI 0.58-1.20; p = 0.341) and cannulation site bleeding (OR 0.90; 95% CI 0.66-1.22; p = 0.471). The comparison of outcomes provided similar results across different levels of center percutaneous experience or center ECPR volume. CONCLUSIONS Among adults receiving ECPR, percutaneous cannulation was associated with probable lower rate of severe neurological complication, and similar rates of in-hospital mortality, limb ischemia and cannulation site bleeding.
Collapse
Affiliation(s)
- Liangshan Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chenglong Li
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xin Hao
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Peter Rycus
- Extracorporeal Life Support Organization (ELSO), University of Michigan, Ann Arbor, MI, USA
| | - Joseph E Tonna
- Division of Emergency Medicine, Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health, Salt Lake City, UT, USA
| | - Peta Alexander
- Department of Cardiology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Hong Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Feng Yang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Xiaotong Hou
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Xiang P, Hu J, Wang H, Luo Y, Gu C, Tan X, Tu Y, Guo W, Chen L, Gao L, Chen R, Yang J. miR-204-5p is sponged by TUG1 to aggravate neuron damage induced by focal cerebral ischemia and reperfusion injury through upregulating COX2. Cell Death Dis 2022; 8:89. [PMID: 35228515 PMCID: PMC8885635 DOI: 10.1038/s41420-022-00885-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/24/2023]
Abstract
Studies have reported that miR-204-5p is involved in multiple biological processes. However, little is known about the expression and mechanism of miR-204-5p in cerebral ischemia and reperfusion injury. This study found that miR-204-5p expression was significantly downregulated in the blood of patients with ischemic stroke, MCAO/R rat brains, and OGD/R neurons. Overexpression of miR-204-5p markedly reduced infarct volume and neurological impairment and alleviated the inflammatory response in vivo. miR-204-5p promoted neuronal viability and reduced apoptotic cells in vitro. Mechanically, miR-204-5p was negatively regulated by the expression lncRNA TUG1 upstream and down-regulated COX2 expression downstream. Therefore, the TUG1/miR-204-5p/COX2 axis was involved in ischemia and reperfusion-induced neuronal damage. This finding may provide a novel strategy for the treatment of cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Pu Xiang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.,Department of Pharmacy, Dianjiang People's Hospital of Chongqing, Chongqing, 408300, China
| | - Jian Hu
- Department of Hepatobiliary Surgery, Dianjiang People's Hospital of Chongqing, Chongqing, 408300, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China
| | - Chao Gu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China
| | - Xiaodan Tan
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China
| | - Yujun Tu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China
| | - Wenjia Guo
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China
| | - Lin Chen
- Department of Neurology, Dianjiang People's Hospital of Chongqing, Chongqing, 408300, China
| | - Lin Gao
- Department of Neurology, Dianjiang People's Hospital of Chongqing, Chongqing, 408300, China
| | - Rongchun Chen
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| |
Collapse
|
3
|
Santos-Galdiano M, González-Rodríguez P, Font-Belmonte E, Ugidos IF, Anuncibay-Soto B, Pérez-Rodríguez D, Fernández-López A. Celecoxib-Dependent Neuroprotection in a Rat Model of Transient Middle Cerebral Artery Occlusion (tMCAO) Involves Modifications in Unfolded Protein Response (UPR) and Proteasome. Mol Neurobiol 2021; 58:1404-1417. [PMID: 33184783 DOI: 10.1007/s12035-020-02202-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Stroke is one of the main causes of death and disability worldwide. Ischemic stroke results in unfolded/misfolded protein accumulation in endoplasmic reticulum (ER), a condition known as ER stress. We hypothesized that previously reported neuroprotection of celecoxib, a selective inhibitor of cyclooxygenase-2, in transient middle cerebral artery occlusion (tMCAO) model, relies on the ER stress decrease. To probe this hypothesis, Sprague-Dawley rats were subjected to 1 h of tMCAO and treated with celecoxib or vehicle 1 and 24 h after ischemia. Protein and mRNA levels of the main hallmarks of ER stress, unfolded protein response (UPR) activation, UPR-induced cell death, and ubiquitin proteasome system (UPS) and autophagy, the main protein degradation pathways, were measured at 12 and 48 h of reperfusion. Celecoxib treatment decreased polyubiquitinated protein load and ER stress marker expression such as glucose-related protein 78 (GRP78), C/EBP (CCAAT/enhancer-binding protein) homologous protein (CHOP), and caspase 12 after 48 h of reperfusion. Regarding the UPR activation, celecoxib promoted inositol-requiring enzyme 1 (IRE1) pathway instead of double-stranded RNA-activated protein kinase-like ER kinase (PERK) pathway. Furthermore, celecoxib treatment increased proteasome catalytic subunits transcript levels and decreased p62 protein levels, while the microtubule-associated protein 1 light chain 3 (LC3B) II/I ratio remained unchanged. Thus, the ability of celecoxib treatment on reducing the ER stress correlates with the enhancement of IRE1-UPR pathway and UPS degradation. These data support the ability of anti-inflammatory therapy in modulating ER stress and reveal the IRE1 pathway as a promising therapeutic target in stroke therapy.Graphical abstract.
Collapse
Affiliation(s)
- María Santos-Galdiano
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Paloma González-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Enrique Font-Belmonte
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
| | - Irene F Ugidos
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Currently at AIV Institute, University of Eastern Finland, Kuopio, Finland
| | - Berta Anuncibay-Soto
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain
- Currently at Department of Life Sciences, Imperial College London (ICL), London, UK
| | - Diego Pérez-Rodríguez
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain.
- Currently at Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| | - Arsenio Fernández-López
- Área de Biología Celular, Instituto de Biomedicina, Campus de Vegazana s/n, Universidad de León, León, Spain.
| |
Collapse
|
4
|
Long Y, Yang Q, Xiang Y, Zhang Y, Wan J, Liu S, Li N, Peng W. Nose to brain drug delivery - A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res 2020; 159:104795. [PMID: 32278035 DOI: 10.1016/j.phrs.2020.104795] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Cerebral ischemia reperfusion injury (CIRI), one of the major causes of death from stroke in the world, not only causes tremendous damage to human health, but also brings heavy economic burden to society. Current available treatments for CIRI, including mechanical therapies and drug therapies, are often accompanied by significant side-effects. Therefore, it is necessary to discovery new strategies for treating CIRI. Many studies have confirmed that the herbal medicine has the advantages of abundant resources, good curative effect and little side effects, which can be used as potential drug for treatment of CIRI through multiple targets. It's known that oral administration commonly has low bioavailability, and injection administration is inconvenient and unsafe. Many drugs can't delivery to brain through routine pathways due to the blood-brain-barrier (BBB). Interestingly, increasing evidences have suggested the nasal administration is a potential direct route to transport drug into brain avoiding the BBB and has the characteristics of high bioavailability for treating brain diseases. Therefore, intranasal administration can be treated as an alternative way to treat brain diseases. In the present review, effective methods to treat CIRI by using active ingredients derived from herbal medicine through nose to brain drug delivery (NBDD) are updated and discussed, and some related pharmacological mechanisms have also been emphasized. Our present study would be beneficial for the further drug development of natural agents from herbal medicines via NBDD.
Collapse
Affiliation(s)
- Yu Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, PR China
| | - Yan Xiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Yulu Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Jinyan Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Songyu Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Nan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| |
Collapse
|
5
|
Font‐Belmonte E, Ugidos IF, Santos‐Galdiano M, González‐Rodríguez P, Anuncibay‐Soto B, Pérez‐Rodríguez D, Gonzalo‐Orden JM, Fernández‐López A. Post‐ischemic salubrinal administration reduces necroptosis in a rat model of global cerebral ischemia. J Neurochem 2019; 151:777-794. [DOI: 10.1111/jnc.14789] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Irene F. Ugidos
- Área de Biología Celular, Instituto de Biomedicina University of León León Spain
| | | | | | - Berta Anuncibay‐Soto
- Área de Biología Celular, Instituto de Biomedicina University of León León Spain
| | | | | | | |
Collapse
|
6
|
Vu KV, Jeong CY, Nguyen TT, Dinh TTH, Lee H, Hong SW. Deficiency of AtGFAT1 activity impairs growth, pollen germination and tolerance to tunicamycin in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1775-1787. [PMID: 30775776 PMCID: PMC6436160 DOI: 10.1093/jxb/erz055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 01/31/2019] [Indexed: 05/15/2023]
Abstract
The hexosamine biosynthetic pathway (HBP) plays essential roles in growth and development in plants. However, insight into the biological function of glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1), mediating the first regulatory step of the HBP, remains unclear in plants. Here, we report the molecular characterization of Arabidopsis AtGFAT1 gene. AtGFAT1 was highly expressed in mature pollen grains, but its expression was not detectable in the rest of the organs. Pollen grains bearing the gfat1-2 knockout allele displayed defects in a polar deposition of pectin and callose in the pollen cell wall, leading to no genetic transmission of the gfat1-2 allele through the male gametophyte. AtGFAT1 overexpression increased glucosamine (GlcN) content and enhanced resistance to tunicamycin (Tm) treatment, while RNAi-mediated suppression reduced GlcN content and resistance to Tm treatment. However, the decrease in Tm resistance by RNAi suppression of AtGFAT1 was recovered by a GlcN supplement. The exogenous GlcN supplement also rescued gfat1-2/gaft1-2 mutant plants, which were otherwise not viable. The gfat1-2/gfat1-2 plants stopped growing at the germination stage on GlcN-free medium, but GlcN supplement allowed wild-type growth of gfat1-2/gfat1-2 plants. In addition, reactive oxygen species production, cell death and a decrease in protein N-glycosylation were observed in gfat1-2/gaft1-2 mutant plants grown on GlcN-free medium, whereas these aberrant defects were not detectable on GlcN-sufficient medium. Taken together, these results show that the reduction of protein N-glycosylation was at least partially responsible for many aberrant phenotypes in growth and development as well as the response to Tm treatment caused by AtGFAT1 deficiency in Arabidopsis.
Collapse
Affiliation(s)
- Kien Van Vu
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research institute, Chonnam National University, Gwangju, Republic of Korea
| | - Chan Young Jeong
- Department of Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Thuy Thi Nguyen
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research institute, Chonnam National University, Gwangju, Republic of Korea
| | - Trang Thi Huyen Dinh
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research institute, Chonnam National University, Gwangju, Republic of Korea
| | - Hojoung Lee
- Department of Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
- Correspondence: or
| | - Suk-Whan Hong
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research institute, Chonnam National University, Gwangju, Republic of Korea
- Correspondence: or
| |
Collapse
|
7
|
Yu HY, Wang CH, Chi NH, Huang SC, Chou HW, Chou NK, Chen YS. Effect of interplay between age and low-flow duration on neurologic outcomes of extracorporeal cardiopulmonary resuscitation. Intensive Care Med 2018; 45:44-54. [PMID: 30547322 PMCID: PMC6334728 DOI: 10.1007/s00134-018-5496-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/03/2018] [Indexed: 11/29/2022]
Abstract
Purpose Caseloads of extracorporeal cardiopulmonary resuscitation (ECPR) have increased considerably, and hospital mortality rates remain high and unpredictable. The present study evaluated the effects of the interplay between age and prolonged low-flow duration (LFD) on hospital survival rates in elderly patients to identify subgroups that can benefit from ECPR. Methods Adult patients who received ECPR in our institution (2006–2016) were classified into groups 1, 2, and 3 (18–65, 65–75, and > 75 years, respectively). Data regarding ECPR and adverse events during hospitalization were collected prospectively. The primary end point was favorable neurologic outcome (cerebral performance category 1 or 2) at hospital discharge. Results In total, 482 patients were divided into groups 1, 2, and 3 (70.5%, 19.3%, and 10.2%, respectively). LFDs were comparable among the groups (40.3, 41.0, and 44.3 min in groups 1, 2, and 3, P = 0.781, 0.231, and 0.382, respectively). Favorable neurologic outcome rates were nonsignificantly lower in group 3 than in the other groups (27.6%, 24.7%, and 18.4% for group 1, 2, and 3, respectively). Subgroup analysis revealed that the favorable neurologic outcome rates in group 1 were 36.7%, 25.4%, and 13.0% for LFDs of < 30, 30–60, and > 60 min, respectively (P = 0.005); in group 2, they were 32.1%, 21.2%, and 23.1%, respectively (P = 0.548); in group 3 they were 25.0%, 20.8%, and 0.0%, respectively (P = 0.274). Conclusion On emergency consultation for ECPR, age and low-flow duration should be considered together to predict neurologic outcome. Electronic supplementary material The online version of this article (10.1007/s00134-018-5496-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsi-Yu Yu
- Department of Surgery, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chih-Hsien Wang
- Department of Surgery, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Nai-Hsin Chi
- Department of Surgery, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Shu-Chien Huang
- Department of Surgery, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Heng-Wen Chou
- Department of Surgery, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Nai-Kuan Chou
- Department of Surgery, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Yih-Sharng Chen
- Department of Surgery, National Taiwan University Hospital, and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
8
|
Landucci E, Llorente IL, Anuncibay-Soto B, Pellegrini-Giampietro DE, Fernández-López A. Using organotypic hippocampal slice cultures to gain insight into mechanisms responsible for the neuroprotective effects of meloxicam: a role for gamma aminobutyric and endoplasmic reticulum stress. Neural Regen Res 2018; 14:65-66. [PMID: 30531073 PMCID: PMC6263004 DOI: 10.4103/1673-5374.243704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Elisa Landucci
- Sezione di Farmacologia Clinica e Oncologia, Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
| | - Irene L Llorente
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Berta Anuncibay-Soto
- Área de Biología Celular, Instituto de Biomedicina, Universidad de León; Neural Therapies SL, Edificio Institutos de Investigación, León, Spain
| | | | | |
Collapse
|
9
|
Landucci E, Llorente IL, Anuncibay-Soto B, Pellegrini-Giampietro DE, Fernández-López A. Bicuculline Reverts the Neuroprotective Effects of Meloxicam in an Oxygen and Glucose Deprivation (OGD) Model of Organotypic Hippocampal Slice Cultures. Neuroscience 2018; 386:68-78. [PMID: 29949743 DOI: 10.1016/j.neuroscience.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 01/17/2023]
Abstract
We previously demonstrated that the non-steroidal anti-inflammatory agent meloxicam has neuroprotective effects in an oxygen and glucose deprivation model (OGD) of rat organotypic hippocampal slice cultures. We wondered if GABAergic transmission changed the neuroprotective effects of meloxicam and if meloxicam was able to modulate endoplasmic reticulum stress (ER stress) in this model. Mortality was measured using propidium iodide. Western blot assays were performed to measure levels of cleaved and non-cleaved caspase-3 to quantify apoptosis, while levels of GRP78, GRP94 and phosphorylated eIF2α were used to detect unfolded protein response (UPR). Transcript levels of GRP78, GRP94 and GABAergic receptor α, β, and γ subunits were measured by real-time quantitative polymerase chain reaction (qPCR). In the present study, we show that the presence of meloxicam in a 30 min OGD assay, followed by 24 h of normoxic conditions, presented an antiapoptotic effect. The simultaneous presence of the GABAA receptor antagonist, bicuculline, in combination with meloxicam blocked the neuroprotective effect provided by the latter. However, in light of its effects on caspase 3 and PARP, bicuculline did not seem to promote the apoptotic pathway. Our results also showed that meloxicam modified the unfolded protein response (UPR), as well as the transcriptional response of different genes, including the GABAA receptor, alpha1, beta3 and gamma2 subunits. We concluded that meloxicam has a neuroprotective anti-apoptotic action, is able to enhance the UPR independently of the systemic anti-inflammatory response and its neuroprotective effect can be inhibited by blocking GABAA receptors.
Collapse
Affiliation(s)
- Elisa Landucci
- Sezione di Farmacologia Clinica e Oncologia, Dipartimento di Scienze della Salute, Università di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Irene L Llorente
- Neurology Department, David Geffen School of Medicine, University of California, Los Angeles, USA.
| | - Berta Anuncibay-Soto
- Área de Biología Celular, Instituto de Biomedicina, Universidad de León, 24071 León, Spain; Neural Therapies SL, Edificio Institutos de Investigación, Local B14, Universidad de León, 24071 León, Spain.
| | - Domenico E Pellegrini-Giampietro
- Sezione di Farmacologia Clinica e Oncologia, Dipartimento di Scienze della Salute, Università di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy.
| | | |
Collapse
|
10
|
Jiang M, Yu S, Yu Z, Sheng H, Li Y, Liu S, Warner DS, Paschen W, Yang W. XBP1 (X-Box-Binding Protein-1)-Dependent O-GlcNAcylation Is Neuroprotective in Ischemic Stroke in Young Mice and Its Impairment in Aged Mice Is Rescued by Thiamet-G. Stroke 2017; 48:1646-1654. [PMID: 28487326 DOI: 10.1161/strokeaha.117.016579] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/09/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein response is activated. A key unfolded protein response prosurvival pathway is controlled by the endoplasmic reticulum stress sensor (inositol-requiring enzyme-1), XBP1 (downstream X-box-binding protein-1), and O-GlcNAc (O-linked β-N-acetylglucosamine) modification of proteins (O-GlcNAcylation). Stroke impairs endoplasmic reticulum function, which activates unfolded protein response. The rationale of this study was to explore the potentials of the IRE1/XBP1/O-GlcNAc axis as a target for neuroprotection in ischemic stroke. METHODS Mice with Xbp1 loss and gain of function in neurons were generated. Stroke was induced by transient or permanent occlusion of the middle cerebral artery in young and aged mice. Thiamet-G was used to increase O-GlcNAcylation. RESULTS Deletion of Xbp1 worsened outcome after transient and permanent middle cerebral artery occlusion. After stroke, O-GlcNAcylation was activated in neurons of the stroke penumbra in young mice, which was largely Xbp1 dependent. This activation of O-GlcNAcylation was impaired in aged mice. Pharmacological increase of O-GlcNAcylation before or after stroke improved outcome in both young and aged mice. CONCLUSIONS Our study indicates a critical role for the IRE1/XBP1 unfolded protein response branch in stroke outcome. O-GlcNAcylation is a prosurvival pathway that is activated in the stroke penumbra in young mice but impaired in aged mice. Boosting prosurvival pathways to counterbalance the age-related decline in the brain's self-healing capacity could be a promising strategy to improve ischemic stroke outcome in aged brains.
Collapse
Affiliation(s)
- Meng Jiang
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Shu Yu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Zhui Yu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Huaxin Sheng
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Ying Li
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Shuai Liu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - David S Warner
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Wulf Paschen
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.).
| | - Wei Yang
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.).
| |
Collapse
|
11
|
Tuzcu H, Unal B, Kırac E, Konuk E, Ozcan F, Elpek GO, Demir N, Aslan M. Neutral sphingomyelinase inhibition alleviates apoptosis, but not ER stress, in liver ischemia-reperfusion injury. Free Radic Res 2017; 51:253-268. [PMID: 28277984 DOI: 10.1080/10715762.2017.1298103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous studies have revealed the activation of neutral sphingomyelinase (N-SMase)/ceramide pathway in hepatic tissue following warm liver ischemia reperfusion (IR) injury. Excessive ceramide accumulation is known to potentiate apoptotic stimuli and a link between apoptosis and endoplasmic reticulum (ER) stress has been established in hepatic IR injury. Thus, this study determined the role of selective N-SMase inhibition on ER stress and apoptotic markers in a rat model of liver IR injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60 min, followed by 60 min reperfusion. Levels of sphingmyelin and ceramide in liver tissue were determined by an optimized multiple reactions monitoring (MRM) method using ultrafast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Spingomyelin levels were significantly increased in all IR groups compared with controls. Treatment with a specific N-SMase inhibitor significantly decreased all measured ceramides in IR injury. A significant increase was observed in ER stress markers C/EBP-homologous protein (CHOP) and 78 kDa glucose-regulated protein (GRP78) in IR injury, which was not significantly altered by N-SMase inhibition. Inhibition of N-SMase caused a significant reduction in phospho-NF-kB levels, hepatic TUNEL staining, cytosolic cytochrome c, and caspase-3, -8, and -9 activities which were significantly increased in IR injury. Data herein confirm the role of ceramide in increased apoptotic cell death and highlight the protective effect of N-SMase inhibition in down-regulation of apoptotic stimuli responses occurring in hepatic IR injury.
Collapse
Affiliation(s)
- Hazal Tuzcu
- a Department of Medical Biochemistry , Akdeniz University Faculty of Medicine , Antalya , Turkey
| | - Betul Unal
- b Department of Pathology , Akdeniz University Faculty of Medicine , Antalya , Turkey
| | - Ebru Kırac
- a Department of Medical Biochemistry , Akdeniz University Faculty of Medicine , Antalya , Turkey
| | - Esma Konuk
- c Department of Histology , Akdeniz University Faculty of Medicine , Antalya , Turkey
| | - Filiz Ozcan
- a Department of Medical Biochemistry , Akdeniz University Faculty of Medicine , Antalya , Turkey
| | - Gulsum O Elpek
- b Department of Pathology , Akdeniz University Faculty of Medicine , Antalya , Turkey
| | - Necdet Demir
- c Department of Histology , Akdeniz University Faculty of Medicine , Antalya , Turkey
| | - Mutay Aslan
- a Department of Medical Biochemistry , Akdeniz University Faculty of Medicine , Antalya , Turkey
| |
Collapse
|
12
|
Martín-Aragón Baudel MAS, Poole AV, Darlison MG. Chloride co-transporters as possible therapeutic targets for stroke. J Neurochem 2016; 140:195-209. [PMID: 27861901 DOI: 10.1111/jnc.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of death and disability worldwide. The major type of stroke is an ischaemic one, which is caused by a blockage that interrupts blood flow to the brain. There are currently very few pharmacological strategies to reduce the damage and social burden triggered by this pathology. The harm caused by the interruption of blood flow to the brain unfolds in the subsequent hours and days, so it is critical to identify new therapeutic targets that could reduce neuronal death associated with the spread of the damage. Here, we review some of the key molecular mechanisms involved in the progression of neuronal death, focusing on some new and promising studies. In particular, we focus on the potential of the chloride co-transporter (CCC) family of proteins, mediators of the GABAergic response, both during the early and later stages of stroke, to promote neuroprotection and recovery. Different studies of CCCs during the chronic and recovery phases post-stroke reveal the importance of timing when considering CCCs as potential neuroprotective and/or neuromodulator targets. The molecular regulatory mechanisms of the two main neuronal CCCs, NKCC1 and KCC2, are further discussed as an indirect approach for promoting neuroprotection and neurorehabilitation following an ischaemic insult. Finally, we mention the likely importance of combining different strategies in order to achieve more effective therapies.
Collapse
Affiliation(s)
| | - Amy V Poole
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| | - Mark G Darlison
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, UK
| |
Collapse
|
13
|
Barger SW. Gene regulation and genetics in neurochemistry, past to future. J Neurochem 2016; 139 Suppl 2:24-57. [PMID: 27747882 DOI: 10.1111/jnc.13629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/01/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ask any neuroscientist to name the most profound discoveries in the field in the past 60 years, and at or near the top of the list will be a phenomenon or technique related to genes and their expression. Indeed, our understanding of genetics and gene regulation has ushered in whole new systems of knowledge and new empirical approaches, many of which could not have even been imagined prior to the molecular biology boon of recent decades. Neurochemistry, in the classic sense, intersects with these concepts in the manifestation of neuropeptides, obviously dependent upon the central dogma (the established rules by which DNA sequence is eventually converted into protein primary structure) not only for their conformation but also for their levels and locales of expression. But, expanding these considerations to non-peptide neurotransmitters illustrates how gene regulatory events impact neurochemistry in a much broader sense, extending beyond the neurochemicals that translate electrical signals into chemical ones in the synapse, to also include every aspect of neural development, structure, function, and pathology. From the beginning, the mutability - yet relative stability - of genes and their expression patterns were recognized as potential substrates for some of the most intriguing phenomena in neurobiology - those instances of plasticity required for learning and memory. Near-heretical speculation was offered in the idea that perhaps the very sequence of the genome was altered to encode memories. A fascinating component of the intervening progress includes evidence that the central dogma is not nearly as rigid and consistent as we once thought. And this mutability extends to the potential to manipulate that code for both experimental and clinical purposes. Astonishing progress has been made in the molecular biology of neurochemistry during the 60 years since this journal debuted. Many of the gains in conceptual understanding have been driven by methodological progress, from automated high-throughput sequencing instruments to recombinant-DNA vectors that can convey color-coded genetic modifications in the chromosomes of live adult animals. This review covers the highlights of these advances, both theoretical and technological, along with a brief window into the promising science ahead. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Steven W Barger
- Department of Geriatrics, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. .,Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
| |
Collapse
|
14
|
Lee JK, Wang B, Reyes M, Armstrong JS, Kulikowicz E, Santos PT, Lee JH, Koehler RC, Martin LJ. Hypothermia and Rewarming Activate a Macroglial Unfolded Protein Response Independent of Hypoxic-Ischemic Brain Injury in Neonatal Piglets. Dev Neurosci 2016; 38:277-294. [PMID: 27622292 DOI: 10.1159/000448585] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
Therapeutic hypothermia provides incomplete neuroprotection after hypoxia-ischemia (HI)-induced brain injury in neonates. We previously showed that cortical neuron and white matter apoptosis are promoted by hypothermia and early rewarming in a piglet model of HI. The unfolded protein response (UPR) may be one of the potential mediators of this cell death. Here, neonatal piglets underwent HI or sham surgery followed by 29 h of normothermia, 2 h of normothermia + 27 h of hypothermia or 18 h of hypothermia + rewarming. Piglets recovered for 29 h. Immunohistochemistry for endoplasmic reticulum to nucleus signaling-1 protein (ERN1), a marker of UPR activation, was used to determine the ratios of ERN1+ macroglia and neurons in the motor subcortical white matter and cerebral cortex. The ERN1+ macroglia were immunophenotyped as oligodendrocytes and astrocytes by immunofluorescent colabeling. Temperature (p = 0.046) and HI (p < 0.001) independently affected the ratio of ERN1+ macroglia. In sham piglets, sustained hypothermia (p = 0.011) and rewarming (p = 0.004) increased the ERN1+ macroglia ratio above that in normothermia. HI prior to hypothermia diminished the UPR. Ratios of ERN1+ macroglia correlated with white matter apoptotic profile counts in shams (r = 0.472; p = 0.026), thereby associating UPR activation with white matter apoptosis during hypothermia and rewarming. Accordingly, macroglial cell counts decreased in shams that received sustained hypothermia (p = 0.009) or rewarming (p = 0.007) compared to those in normothermic shams. HI prior to hypothermia neutralized the macroglial cell loss. Neither HI nor temperature affected ERN1+ neuron ratios. In summary, delayed hypothermia and rewarming activate the macroglial UPR, which is associated with white matter apoptosis. HI may decrease the macroglial endoplasmic reticulum stress response after hypothermia and rewarming.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Md., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Anuncibay-Soto B, Pérez-Rodríguez D, Santos-Galdiano M, Font E, Regueiro-Purriños M, Fernández-López A. Post-ischemic salubrinal treatment results in a neuroprotective role in global cerebral ischemia. J Neurochem 2016; 138:295-306. [PMID: 27123756 DOI: 10.1111/jnc.13651] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/07/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
This study describes the neuroprotective effect of treatment with salubrinal 1 and 24 h following 15 min of ischemia in a two-vessel occlusion model of global cerebral ischemia. The purpose of this study was to determine if salubrinal, an enhancer of the unfolded protein response, reduces the neural damage modulating the inflammatory response. The study was performed in CA1 and CA3 hippocampal areas as well as in the cerebral cortex whose different vulnerability to ischemic damage is widely described. Characterization of proteins was made by western blot, immunofluorescence, and ELISA, whereas mRNA levels were measured by Quantitative PCR. The salubrinal treatment decreased the cell demise in CA1 at 7 days as well as the levels of matrix metalloprotease 9 (MMP-9) in CA1 and cerebral cortex at 48 h and ICAM-1 and VCAM-1 cell adhesion molecules. However, increases in tumor necrosis factor α and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inflammatory markers were observed at 24 h. Glial fibrillary acidic protein levels were not modified by salubrinal treatment in CA1 and cerebral cortex. We describe a neuroprotective effect of the post-ischemic treatment with salubrinal, measured as a decrease both in CA1 cell demise and in the blood-brain barrier impairment. We hypothesize that the ability of salubrinal to counteract the CA1 cell demise is because of a reduced ability of this structure to elicit unfolded protein response which would account for its greater ischemic vulnerability. Data of both treated and non-treated animals suggest that the neurovascular unit present a structure-dependent response to ischemia and a different course time for CA1/cerebral cortex compared with CA3. Finally, our study reveals a high responsiveness of endothelial cells to salubrinal in contrast to the limited responsiveness of astrocytes. The alleviation of ER stress by enhancing UPR with salubrinal treatment reduces the ischemic damage. This effect varies across the different neurovascular unit cell types. The salubrinal neuroprotective effect on CA1 supports differences in neurovascular unit for different brain regions and involves the inflammatory response and its time course. Thus, UPR modulation could be a therapeutic target in cerebral ischemia.
Collapse
Affiliation(s)
| | | | | | - Enrique Font
- Área Biología Celular, Instituto Biomedicina, Universidad de León, León, Spain
| | | | | |
Collapse
|
16
|
Injury to the nervous system: A look into the ER. Brain Res 2016; 1648:617-625. [PMID: 27117870 DOI: 10.1016/j.brainres.2016.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
Injury to the central or peripheral nervous systems leads to the loss of cognitive and/or sensorimotor capabilities that still lack an effective treatment. Although injury to the nervous system involves multiple and complex molecular factors, alteration to protein homeostasis is emerging as a relevant pathological mechanism. In particular, chronic endoplasmic reticulum (ER) stress is proposed as a possible driver of neuronal dysfunction in conditions such as spinal cord injury, stroke and damage to peripheral nerves. Importantly, manipulation of the unfolded protein response (UPR), a homeostatic pathway engaged by ER stress, has proved effective in improving cognitive and motor recovery after nervous system injury. Here we provide an overview on recent findings depicting a functional role of the UPR to the functional recovery after injury in the peripheral and central nervous systems. This article is part of a Special Issue entitled SI:ER stress.
Collapse
|
17
|
Anuncibay-Soto B, Santos-Galdiano M, Fernández-López A. Neuroprotection by salubrinal treatment in global cerebral ischemia. Neural Regen Res 2016; 11:1744-1745. [PMID: 28123406 PMCID: PMC5204218 DOI: 10.4103/1673-5374.194711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Berta Anuncibay-Soto
- Area de Biologia Celular, Instituto de Biomedicina, Universidad de León, León, Spain
| | - María Santos-Galdiano
- Area de Biologia Celular, Instituto de Biomedicina, Universidad de León, León, Spain
| | | |
Collapse
|
18
|
Gulyaeva NV. Brain ischemia, endoplasmic reticulum stress, and astroglial activation: new insights. J Neurochem 2015; 132:263-5. [PMID: 25586383 DOI: 10.1111/jnc.13016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 12/14/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow Research and Clinical Center for Neuropsychiatry, Moscow, Russia
| |
Collapse
|
19
|
Anuncibay-Soto B, Pérez-Rodríguez D, Llorente IL, Regueiro-Purriños M, Gonzalo-Orden JM, Fernández-López A. Age-dependent modifications in vascular adhesion molecules and apoptosis after 48-h reperfusion in a rat global cerebral ischemia model. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9703. [PMID: 25182537 PMCID: PMC4453934 DOI: 10.1007/s11357-014-9703-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
Stroke is one of the leading causes of death and permanent disability in the elderly. However, most of the experimental studies on stroke are based on young animals, and we hypothesised that age can substantially affect the stroke response. The two-vessel occlusion model of global ischemia by occluding the common carotid arteries for 15 min at 40 mmHg of blood pressure was carried out in 3- and 18-month-old male Sprague-Dawley rats. The adhesion molecules E- and P-selectin, cell adhesion molecules (CAMs), both intercellular (ICAM-1) and vascular (VCAM-1), as well as glial fibrillary acidic protein (GFAP), and cleaved caspase-3 were measured at 48 h after ischemia in the cerebral cortex and hippocampus using Western blot, qPCR and immunofluorescence techniques. Diametric expression of GFAP and a different morphological pattern of caspase-3 labelling, although no changes in the cell number, were observed in the neurons of young and old animals. Expression of E-selectin and CAMs was also modified in an age- and ischemia/reperfusion-dependent manner. The hippocampus and cerebral cortex had similar response patterns for most of the markers studied. Our data suggest that old and young animals present different time-courses of neuroinflammation and apoptosis after ischemic damage. On the other hand, these results suggest that neuroinflammation is dependent on age rather than on the different vulnerability described for the hippocampus and cerebral cortex. These differences should be taken into account in searching for therapeutic targets.
Collapse
Affiliation(s)
- Berta Anuncibay-Soto
- />Área de Biología Celular, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | - Diego Pérez-Rodríguez
- />Área de Biología Celular, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | - Irene L Llorente
- />Área de Biología Celular, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | - Marta Regueiro-Purriños
- />Área de Medicina, Cirugía y Anatomía Veterinaria, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | - José Manuel Gonzalo-Orden
- />Área de Medicina, Cirugía y Anatomía Veterinaria, Instituto de Biomedicina, Universidad de León, Leon, Spain
| | | |
Collapse
|
20
|
Abstract
The hexosamine biosynthetic pathway (HBP) generates metabolites for protein N- and O-glycosylation. Wang et al. and Denzel et al. report a hitherto unknown link between the HBP and stress in the endoplasmic reticulum. These studies establish the HBP as a critical component of the cellular machinery of protein homeostasis.
Collapse
Affiliation(s)
- Lisa Vincenz
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
21
|
Gelé P, Vingtdeux V, Potey C, Drobecq H, Ghestem A, Melnyk P, Buée L, Sergeant N, Bordet R. Recovery of brain biomarkers following peroxisome proliferator-activated receptor agonist neuroprotective treatment before ischemic stroke. Proteome Sci 2014; 12:24. [PMID: 24944524 PMCID: PMC4061923 DOI: 10.1186/1477-5956-12-24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/01/2014] [Indexed: 01/08/2023] Open
Abstract
Background Lipid lowering agent such as agonists of peroxisome proliferator-activated receptors (PPAR) are suggested as neuroprotective agents and may protect from the sequelae of brain ischemic stroke. Although the demonstration is not clearly established in human, the underlying molecular mechanism may be of interest for future therapeutic purposes. To this end, we have used our well established rodent model of ischemia-reperfusion pre-treated or not with fenofibrate or atorvastatin and performed a differential proteomics analyses of the brain and analysed the protein markers which levels returned to “normal” following pre-treatments with PPARα agonists. Results In order to identify potential therapeutic targets positively modulated by pre-treatment with the PPARα agonists, two-dimensional gel electrophoresis proteome profiles between control, ischemia-reperfusion and pre-treated or not, were compared. The polypeptide which expression was altered following ischemia – reperfusion but whose levels remain unchanged after pre-treatment were characterized by mass spectrometry and further investigated by Western-blotting and immunohistochemistry. A series of 28 polypeptides were characterized among which the protein disulfide isomerase reduction – a protein instrumental to the unfolded protein response system - was shown to be reduced following PPARα agonists treatment while it was strongly increased in ischemia-reperfusion. Conclusions Pre-treatment with PPARα agonist or atorvastatin show potential neuroprotective effects by inhibiting the PDI overexpression in conjunction with the preservation of other neuronal markers, several of which are associated with the regulation of protein homeostasis, signal transduction and maintenance of synaptic plasticity. This proteomic study therefore suggests that neuroprotective effect of PPARα agonists supposes the preservation of the expression of several proteins essential for the maintenance of protein homeostasis not necessarily directly linked to PPARα known-regulated targets.
Collapse
Affiliation(s)
- Patrick Gelé
- Clinical Investigation center, IMPRT, University of Lille II, Cardiologic Hospital, Lille, France ; Inserm UMR 837, JPARC, Place de Verdun, Lille 59045, France ; PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France ; EA1046 - Department de Pharmacology - University of Lille 2, University Hospital Centre Place de Verdun, Lille, France
| | - Valérie Vingtdeux
- Inserm UMR 837, JPARC, Place de Verdun, Lille 59045, France ; PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France
| | - Camille Potey
- EA1046 - Department de Pharmacology - University of Lille 2, University Hospital Centre Place de Verdun, Lille, France
| | - Hervé Drobecq
- PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France ; UMR 8161 CNRS, Biomolecules and Micro-nanotechnologies laboratory - University of Lille 2 - University of Lille 1 - Pasteur Institute of Lille, Lille, France
| | | | - Patricia Melnyk
- PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France ; UMR 8161 CNRS, Biomolecules and Micro-nanotechnologies laboratory - University of Lille 2 - University of Lille 1 - Pasteur Institute of Lille, Lille, France
| | - Luc Buée
- Inserm UMR 837, JPARC, Place de Verdun, Lille 59045, France ; PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France
| | - Nicolas Sergeant
- Inserm UMR 837, JPARC, Place de Verdun, Lille 59045, France ; PRES University Lille Nord de France, University of Lille II, Jean-Pierre Aubert Research Center, Institute of Predictive Medicine and Therapeutic Research, Lille IFR114, France
| | - Régis Bordet
- EA1046 - Department de Pharmacology - University of Lille 2, University Hospital Centre Place de Verdun, Lille, France
| |
Collapse
|