1
|
Magaña-Hernández L, Wagh AS, Fathi JG, Robles JE, Rubio B, Yusuf Y, Rose EE, Brown DE, Perry PE, Hamada E, Anastassov IA. Ultrastructural Characteristics and Synaptic Connectivity of Photoreceptors in the Simplex Retina of Little Skate ( Leucoraja erinacea). eNeuro 2023; 10:ENEURO.0226-23.2023. [PMID: 37827837 PMCID: PMC10614115 DOI: 10.1523/eneuro.0226-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
The retinas of the vast majority of vertebrate species are termed "duplex," that is, they contain both rod and cone photoreceptor neurons in different ratios. The retina of little skate (Leucoraja erinacea) is a rarity among vertebrates because it contains only a single photoreceptor cell type and is thus "simplex." This unique retina provides us with an important comparative model and an exciting opportunity to study retinal circuitry within the context of a visual system with a single photoreceptor cell type. What is perhaps even more intriguing is the fact that the Leucoraja retina is able use that single photoreceptor cell type to function under both scotopic and photopic ranges of illumination. Although some ultrastructural characteristics of skate photoreceptors have been examined previously, leading to a general description of them as "rods" largely based on outer segment (OS) morphology and rhodopsin expression, a detailed study of the fine anatomy of the entire cell and its synaptic connectivity is still lacking. To address this gap in knowledge, we performed serial block-face electron microscopy imaging and examined the structure of skate photoreceptors and their postsynaptic partners. We find that skate photoreceptors exhibit unusual ultrastructural characteristics that are either common to rods or cones in other vertebrates (e.g., outer segment architecture, synaptic ribbon number, terminal extensions), or are somewhere in between those of a typical vertebrate rod or cone (e.g., number of invaginating contacts, clustering of multiple ribbons over a single synaptic invagination). We suggest that some of the ultrastructural characteristics we observe may play a role in the ability of the skate retina to function across scotopic and photopic ranges of illumination. Our findings have the potential to reveal as yet undescribed principles of vertebrate retinal design.
Collapse
Affiliation(s)
| | - Abhiniti S Wagh
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Jessamyn G Fathi
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Julio E Robles
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Beatriz Rubio
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Yaqoub Yusuf
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Erin E Rose
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Daniel E Brown
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Priscilla E Perry
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Elizabeth Hamada
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Ivan A Anastassov
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| |
Collapse
|
2
|
Hu S, Anastassov IA, Kreitzer MA, Slaughter MM, Chappell RL. A dark decrement for enhanced dynamic sensitivity of retinal photoreceptors. Vision Res 2020; 180:80-86. [PMID: 33387934 DOI: 10.1016/j.visres.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
The skate retina provides a native all-rod retina suited for investigating a single type of photoreceptor regarding its properties and signaling to second order cells. Using the aspartate-induced isolated A-wave of the skate eyecup electroretinogram (ERG), it has been shown that adaptation in rods remains Weber-Fechner-like over a 6-log unit increase in background light intensity. Zinc, which can block calcium channels, has been found in the rod synaptic terminal and the synaptic cleft. Histidine is a zinc chelator. Voltage signals from neurons post-synaptic to rods indicate that histidine increases the dark release of glutamate and increases the horizontal cell light response. In histidine, the A-wave response to various light intensities in the dark-adapted retina increased more than fifty percent, corresponding to the effect on horizontal cells. In the presence of background light, although histidine-treated rod light responses remained Weber-Fechner-like, their increment threshold was raised significantly. This indicates that endogenous zinc feedback serves to increase rod sensitivity in a light-adapted retina, despite a corresponding reduction of threshold sensitivity in the dark. We propose that the increase in A-wave amplitude is a result of the increased conductance at the synaptic terminal and that the A-wave can be used to monitor changes in rod transmitter release. Furthermore, endogenous zinc may also provide the benefit of reducing metabolic stress and the risk of glutamate toxicity in the dark.
Collapse
Affiliation(s)
- Shen Hu
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Ivan A Anastassov
- Department of Biology, San Francisco State University, San Francisco, CA, United States; Marine Biological Laboratory, Woods Hole, MA, United States
| | - Matthew A Kreitzer
- Marine Biological Laboratory, Woods Hole, MA, United States; Department of Biology, Indiana Wesleyan University, Marion, IN, United States
| | - Malcolm M Slaughter
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Richard L Chappell
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States; Marine Biological Laboratory, Woods Hole, MA, United States.
| |
Collapse
|
3
|
Neumaier F, Schneider T, Albanna W. Ca v2.3 channel function and Zn 2+-induced modulation: potential mechanisms and (patho)physiological relevance. Channels (Austin) 2020; 14:362-379. [PMID: 33079629 PMCID: PMC7583514 DOI: 10.1080/19336950.2020.1829842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are critical for Ca2+ influx into all types of excitable cells, but their exact function is still poorly understood. Recent reconstruction of homology models for all human VGCCs at atomic resolution provides the opportunity for a structure-based discussion of VGCC function and novel insights into the mechanisms underlying Ca2+ selective flux through these channels. In the present review, we use these data as a basis to examine the structure, function, and Zn2+-induced modulation of Cav2.3 VGCCs, which mediate native R-type currents and belong to the most enigmatic members of the family. Their unique sensitivity to Zn2+ and the existence of multiple mechanisms of Zn2+ action strongly argue for a role of these channels in the modulatory action of endogenous loosely bound Zn2+, pools of which have been detected in a number of neuronal, endocrine, and reproductive tissues. Following a description of the different mechanisms by which Zn2+ has been shown or is thought to alter the function of these channels, we discuss their potential (patho)physiological relevance, taking into account what is known about the magnitude and function of extracellular Zn2+ signals in different tissues. While still far from complete, the picture that emerges is one where Cav2.3 channel expression parallels the occurrence of loosely bound Zn2+ pools in different tissues and where these channels may serve to translate physiological Zn2+ signals into changes of electrical activity and/or intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5) , Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging , Cologne, Germany
| | - Toni Schneider
- Institute of Neurophysiology , Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
4
|
Zinc and Autophagy in Age-Related Macular Degeneration. Int J Mol Sci 2020; 21:ijms21144994. [PMID: 32679798 PMCID: PMC7404247 DOI: 10.3390/ijms21144994] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Zinc supplementation is reported to slow down the progression of age-related macular degeneration (AMD), but there is no general consensus on the beneficiary effect on zinc in AMD. As zinc can stimulate autophagy that is declined in AMD, it is rational to assume that it can slow down its progression. As melanosomes are the main reservoir of zinc in the retina, zinc may decrease the number of lipofuscin granules that are substrates for autophagy. The triad zinc–autophagy–AMD could explain some controversies associated with population studies on zinc supplementation in AMD as the effect of zinc on AMD may be modulated by genetic background. This aspect was not determined in many studies regarding zinc in AMD. Zinc deficiency induces several events associated with AMD pathogenesis, including increased oxidative stress, lipid peroxidation and the resulting lipofuscinogenesis. The latter requires autophagy, which is impaired. This is a vicious cycle-like reaction that may contribute to AMD progression. Promising results with zinc deficiency and supplementation in AMD patients and animal models, as well as emerging evidence of the importance of autophagy in AMD, are the rationale for future research on the role of autophagy in the role of zinc supplementation in AMD.
Collapse
|
5
|
Gilbert R, Peto T, Lengyel I, Emri E. Zinc Nutrition and Inflammation in the Aging Retina. Mol Nutr Food Res 2019; 63:e1801049. [PMID: 31148351 DOI: 10.1002/mnfr.201801049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/18/2019] [Indexed: 12/16/2022]
Abstract
Zinc is an essential nutrient for human health. It plays key roles in maintaining protein structure and stability, serves as catalytic factor for many enzymes, and regulates diverse fundamental cellular processes. Zinc is important in affecting signal transduction and, in particular, in the development and integrity of the immune system, where it affects both innate and adaptive immune responses. The eye, especially the retina-choroid complex, has an unusually high concentration of zinc compared to other tissues. The highest amount of zinc is concentrated in the retinal pigment epithelium (RPE) (RPE-choroid, 292 ± 98.5 µg g-1 dry tissue), followed by the retina (123 ± 62.2 µg g-1 dry tissue). The interplay between zinc and inflammation has been explored in other parts of the body but, so far, has not been extensively researched in the eye. Several lines of evidence suggest that ocular zinc concentration decreases with age, especially in the context of age-related disease. Thus, a hypothesis that retinal function could be modulated by zinc nutrition is proposed, and subsequently trialled clinically. In this review, the distribution and the potential role of zinc in the retina-choroid complex is outlined, especially in relation to inflammation and immunity, and the clinical studies to date are summarized.
Collapse
Affiliation(s)
- Rosie Gilbert
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, EC1V 2PD, UK.,UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK
| | - Tunde Peto
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Imre Lengyel
- UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK.,School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Eszter Emri
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| |
Collapse
|
6
|
Medrano MP, Pisera Fuster A, Sanchis PA, Paez N, Bernabeu RO, Faillace MP. Characterization of proliferative, glial and angiogenic responses after a CoCl
2
‐induced injury of photoreceptor cells in the adult zebrafish retina. Eur J Neurosci 2018; 48:3019-3042. [DOI: 10.1111/ejn.14113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Matias Pedro Medrano
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Antonella Pisera Fuster
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Pablo Antonio Sanchis
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Natalia Paez
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
| | - Ramon Oscar Bernabeu
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
- Departamento de FisiologíaFacultad de MedicinaUniversidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Maria Paula Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO‐Houssay) UBA y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina
- Departamento de FisiologíaFacultad de MedicinaUniversidad de Buenos Aires (UBA) Buenos Aires Argentina
| |
Collapse
|
7
|
An eye on nutrition: The role of vitamins, essential fatty acids, and antioxidants in age-related macular degeneration, dry eye syndrome, and cataract. Clin Dermatol 2016; 34:276-85. [DOI: 10.1016/j.clindermatol.2015.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Prog Neurobiol 2015; 129:1-36. [PMID: 25817891 DOI: 10.1016/j.pneurobio.2014.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 11/20/2022]
Abstract
Voltage-gated calcium channels (VGCCs) represent a key link between electrical signals and non-electrical processes, such as contraction, secretion and transcription. Evolved to achieve high rates of Ca(2+)-selective flux, they possess an elaborate mechanism for selection of Ca(2+) over foreign ions. It has been convincingly linked to competitive binding in the pore, but the fundamental question of how this is reconcilable with high rates of Ca(2+) transfer remains unanswered. By virtue of their similarity to Ca(2+), polyvalent cations can interfere with the function of VGCCs and have proven instrumental in probing the mechanisms underlying selective permeation. Recent emergence of crystallographic data on a set of Ca(2+)-selective model channels provides a structural framework for permeation in VGCCs, and warrants a reconsideration of their diverse modulation by polyvalent cations, which can be roughly separated into three general mechanisms: (I) long-range interactions with charged regions on the surface, affecting the local potential sensed by the channel or influencing voltage-sensor movement by repulsive forces (electrostatic effects), (II) short-range interactions with sites in the ion-conducting pathway, leading to physical obstruction of the channel (pore block), and in some cases (III) short-range interactions with extracellular binding sites, leading to non-electrostatic modifications of channel gating (allosteric effects). These effects, together with the underlying molecular modifications, provide valuable insights into the function of VGCCs, and have important physiological and pathophysiological implications. Allosteric suppression of some of the pore-forming Cavα1-subunits (Cav2.3, Cav3.2) by Zn(2+) and Cu(2+) may play a major role for the regulation of excitability by endogenous transition metal ions. The fact that these ions can often traverse VGCCs can contribute to the detrimental intracellular accumulation of metal ions following excessive release of endogenous Cu(2+) and Zn(2+) or exposure to non-physiological toxic metal ions.
Collapse
|