1
|
Bai J, Li X, Zhao J, Zong H, Yuan Y, Wang L, Zhang X, Ke Y, Han L, Xu J, Ma B, Zhang B, Zhu J. Re-Engineering Therapeutic Anti-Aβ Monoclonal Antibody to Target Amyloid Light Chain. Int J Mol Sci 2024; 25:1593. [PMID: 38338870 PMCID: PMC10855199 DOI: 10.3390/ijms25031593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Amyloidosis involves the deposition of misfolded proteins. Even though it is caused by different pathogenic mechanisms, in aggregate, it shares similar features. Here, we tested and confirmed a hypothesis that an amyloid antibody can be engineered by a few mutations to target a different species. Amyloid light chain (AL) and β-amyloid peptide (Aβ) are two therapeutic targets that are implicated in amyloid light chain amyloidosis and Alzheimer's disease, respectively. Though crenezumab, an anti-Aβ antibody, is currently unsuccessful, we chose it as a model to computationally design and prepare crenezumab variants, aiming to discover a novel antibody with high affinity to AL fibrils and to establish a technology platform for repurposing amyloid monoclonal antibodies. We successfully re-engineered crenezumab to bind both Aβ42 oligomers and AL fibrils with high binding affinities. It is capable of reversing Aβ42-oligomers-induced cytotoxicity, decreasing the formation of AL fibrils, and alleviating AL-fibrils-induced cytotoxicity in vitro. Our research demonstrated that an amyloid antibody could be engineered by a few mutations to bind new amyloid sequences, providing an efficient way to reposition a therapeutic antibody to target different amyloid diseases.
Collapse
Affiliation(s)
- Jingyi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xi Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA;
| | - Huifang Zong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Yuan Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Xiaoshuai Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Lei Han
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
| | - Jianrong Xu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (J.B.); (X.L.); (H.Z.); (Y.Y.); (L.W.); (X.Z.); (Y.K.); (J.Z.)
- Jecho Biopharmaceutical Institute, Shanghai 200240, China;
- Jecho Laboratories, Inc., Frederick, MD 21704, USA
| |
Collapse
|
2
|
Wegmann S, DeVos SL, Zeitler B, Marlen K, Bennett RE, Perez-Rando M, MacKenzie D, Yu Q, Commins C, Bannon RN, Corjuc BT, Chase A, Diez L, Nguyen HOB, Hinkley S, Zhang L, Goodwin A, Ledeboer A, Lam S, Ankoudinova I, Tran H, Scarlott N, Amora R, Surosky R, Miller JC, Robbins AB, Rebar EJ, Urnov FD, Holmes MC, Pooler AM, Riley B, Zhang HS, Hyman BT. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. SCIENCE ADVANCES 2021; 7:7/12/eabe1611. [PMID: 33741591 PMCID: PMC7978433 DOI: 10.1126/sciadv.abe1611] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/05/2021] [Indexed: 05/12/2023]
Abstract
Neuronal tau reduction confers resilience against β-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene MAPT at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied. Sustained tau lowering was achieved without detectable off-target effects, overt histopathological changes, or molecular alterations. Tau reduction with AAV ZFP-TFs was able to rescue neuronal damage around amyloid plaques in a mouse model of Alzheimer's disease (APP/PS1 line). The highly specific, durable, and controlled knockdown of endogenous tau makes AAV-delivered ZFP-TFs a promising approach for the treatment of tau-related human brain diseases.
Collapse
Affiliation(s)
- Susanne Wegmann
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA.
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Sarah L DeVos
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | | | | | - Rachel E Bennett
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Marta Perez-Rando
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Danny MacKenzie
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Qi Yu
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | - Caitlin Commins
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Riley N Bannon
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Bianca T Corjuc
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Alison Chase
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Lisa Diez
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | | | | | - Lei Zhang
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | | | - Stephen Lam
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | - Hung Tran
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | | | | | | | - Ashley B Robbins
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | | | | | | | - Amy M Pooler
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | - Brigit Riley
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | - Bradley T Hyman
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA.
| |
Collapse
|
3
|
Exosomal tau with seeding activity is released from Alzheimer's disease synapses, and seeding potential is associated with amyloid beta. J Transl Med 2021; 101:1605-1617. [PMID: 34462532 PMCID: PMC8590975 DOI: 10.1038/s41374-021-00644-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/23/2023] Open
Abstract
Synaptic transfer of tau has long been hypothesized from the human pathology pattern and has been demonstrated in vitro and in vivo, but the precise mechanisms remain unclear. Extracellular vesicles such as exosomes have been suggested as a mechanism, but not all tau is exosomal. The present experiments use a novel flow cytometry assay to quantify depolarization of synaptosomes by KCl after loading with FM2-10, which induces a fluorescence reduction associated with synaptic vesicle release; the degree of reduction in cryopreserved human samples equaled that seen in fresh mouse synaptosomes. Depolarization induced the release of vesicles in the size range of exosomes, along with tetraspanin markers of extracellular vesicles. A number of tau peptides were released, including tau oligomers; released tau was primarily unphosphorylated and C-terminal truncated, with Aβ release just above background. When exosomes were immunopurified from release supernatants, a prominent tau band showed a dark smeared appearance of SDS-stable oligomers along with the exosomal marker syntenin-1, and these exosomes induced aggregation in the HEK tau biosensor assay. However, the flow-through did not seed aggregation. Size exclusion chromatography of purified released exosomes shows faint signals from tau in the same fractions that show a CD63 band, an exosomal size signal, and seeding activity. Crude synaptosomes from control, tauopathy, and AD cases demonstrated lower seeding in tauopathy compared to AD that is correlated with the measured Aβ42 level. These results show that AD synapses release exosomal tau that is C-terminal-truncated, oligomeric, and with seeding activity that is enhanced by Aβ. Taken together with previous findings, these results are consistent with a direct prion-like heterotypic seeding of tau by Aβ within synaptic terminals, with subsequent loading of aggregated tau onto exosomes that are released and competent for tau seeding activity.
Collapse
|
4
|
Pais M, Martinez L, Ribeiro O, Loureiro J, Fernandez R, Valiengo L, Canineu P, Stella F, Talib L, Radanovic M, Forlenza OV. Early diagnosis and treatment of Alzheimer's disease: new definitions and challenges. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2020; 42:431-441. [PMID: 31994640 PMCID: PMC7430379 DOI: 10.1590/1516-4446-2019-0735] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
The prevalence of Alzheimer's disease (AD), a progressive neurodegenerative disorder, is expected to more than double by 2050. Studies on the pathophysiology of AD have been changing our understanding of this disorder and setting a new scenario for drug development and other therapies. Concepts like the "amyloid cascade" and the "continuum of AD," discussed in this article, are now well established. From updated classifications and recommendations to advances in biomarkers of AD, we aim to critically assess the literature on AD, addressing new definitions and challenges that emerged from recent studies on the subject. Updates on the status of major clinical trials are also given, and future perspectives are discussed.
Collapse
Affiliation(s)
- Marcos Pais
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Luana Martinez
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Octávio Ribeiro
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Júlia Loureiro
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Romel Fernandez
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Leandro Valiengo
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Paulo Canineu
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
- Programa de Gerontologia, Pontifícia Universidade Católica de São Paulo (PUC-SP), São Paulo, SP, Brazil
| | - Florindo Stella
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Leda Talib
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Marcia Radanovic
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Orestes V. Forlenza
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
5
|
Madav Y, Wairkar S, Prabhakar B. Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer's disease. Brain Res Bull 2019; 146:171-184. [PMID: 30634016 DOI: 10.1016/j.brainresbull.2019.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has been a global concern for years due to its severe implications that affects the quality of life of the patients. The available line of therapy for treating Alzheimer's includes acetylcholinesterase inhibitors, NMDA(N-methyl-D-aspartate) antagonists and their combination which gives only symptomatic relief rather than treating the root cause of AD. Senile plaques and neurofibrillary tangles are the characteristic features underlying Alzheimer's pathology. Several attempts have been made towards exploring the niceties of these hallmarks and targeting various aspects of amyloid and tau pathology at different stages to eliminate the ultimate cause. Approaches targeting cleavage and formation of toxic amyloid fragments by secretases, aggregation of amyloid monofilaments, and immunotherapy against amyloid deposits has been extensively studied to treat amyloid pathology. Similarly, for tau pathology, tau hyperphosphorylation, microtubule stabilization, anti-tau immunotherapy has been explored. This article focuses on AD pathology and current pharmacotherapy, precisely for amyloid and tau. Furthermore, preclinical and clinical studies along with potential leads discovered under these approaches have also been included in this article. However, despite extensive research in drug development, overcoming clinical barrier still remain a major challenge for Alzheimer's pharmacotherapy.
Collapse
Affiliation(s)
- Yamini Madav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
6
|
Bittar A, Sengupta U, Kayed R. Prospects for strain-specific immunotherapy in Alzheimer's disease and tauopathies. NPJ Vaccines 2018; 3:9. [PMID: 29507776 PMCID: PMC5829136 DOI: 10.1038/s41541-018-0046-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/20/2022] Open
Abstract
With increasing age, as the incidence of Alzheimer's disease is increasing, finding a therapeutic intervention is becoming critically important to either prevent or slow down the progression of the disease. Passive immunotherapy has been demonstrated as a successful way of reducing large aggregates and improving cognition in animal models of both tauopathies and Alzheimer's disease. However, with all the continuous attempts and significant success of immunotherapy in preclinical studies, finding a successful clinical therapy has been a great challenge, possibly indicating a lack of accuracy in targeting the toxic species. Both active and passive immunotherapy approaches in transgenic animals have been demonstrated to have pros and cons. Passive immunotherapy has been favored and many mechanisms have been shown to clear toxic amyloid and tau aggregates and improve memory. These mechanisms may differ depending on the antibodie's' target and administration route. In this regard, deciding on affinity vs. specificity of the antibodies plays a significant role in terms of avoiding the clearance of the physiological forms of the targeted proteins and reducing adverse side effects. In addition, knowing that a single protein can exist in different conformational states, termed as strains, with varying degrees of neurotoxicity and seeding properties, presents an additional level of complexity. Therefore, immunotherapy targeting specifically the toxic strains will aid in developing potential strategies for intervention. Moreover, an approach of combinatorial immunotherapies against different amyloidogenic proteins, at distinct levels of the disease progression, might offer an effective therapy in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
7
|
Zhao J, Nussinov R, Ma B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J Biol Chem 2017; 292:18325-18343. [PMID: 28924036 PMCID: PMC5672054 DOI: 10.1074/jbc.m117.801514] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/26/2017] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease is one of the most devastating neurodegenerative diseases without effective therapies. Immunotherapy is a promising approach, but amyloid antibody structural information is limited. Here we simulate the recognition of monomeric, oligomeric, and fibril amyloid-β (Aβ) by three homologous antibodies (solanezumab, crenezumab, and their chimera, CreneFab). Solanezumab only binds the monomer, whereas crenezumab and CreneFab can recognize different oligomerization states; however, the structural basis for this observation is not understood. We successfully identified stable complexes of crenezumab with Aβ pentamer (oligomer model) and 16-mer (fibril model). It is noteworthy that solanezumab targets Aβ residues 16-26 preferentially in the monomeric state; conversely, crenezumab consistently targets residues 13-16 in different oligomeric states. Unlike the buried monomeric peptide in solanezumab's complementarity-determining region, crenezumab binds the oligomer's lateral and edge residues. Surprisingly, crenezumab's complementarity-determining region loops can effectively bind the Aβ fibril lateral surface around the same 13-16 region. The constant domain influences antigen recognition through entropy redistribution. Different constant domain residues in solanezumab/crenezumab/chimera influence the binding of Aβ aggregates. Collectively, we provide molecular insight into the recognition mechanisms facilitating antibody design.
Collapse
MESH Headings
- Amyloid/antagonists & inhibitors
- Amyloid/chemistry
- Amyloid/metabolism
- Amyloid beta-Peptides/antagonists & inhibitors
- Amyloid beta-Peptides/chemistry
- Amyloid beta-Peptides/metabolism
- Animals
- Antibodies/chemistry
- Antibodies/genetics
- Antibodies/metabolism
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Antibody Specificity
- Binding Sites, Antibody
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Drug Design
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Weight
- Nootropic Agents/chemistry
- Nootropic Agents/metabolism
- Protein Aggregates
- Protein Aggregation, Pathological/metabolism
- Protein Conformation
- Protein Engineering
- Protein Multimerization
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Structural Homology, Protein
Collapse
Affiliation(s)
- Jun Zhao
- From the Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702
| | - Ruth Nussinov
- the Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702, and
- the Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- the Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, NCI-Frederick, Frederick, Maryland 21702, and
| |
Collapse
|
8
|
Tau Spread, Apolipoprotein E, Inflammation, and More: Rapidly Evolving Basic Science in Alzheimer Disease. Neurol Clin 2017; 35:175-190. [PMID: 28410655 DOI: 10.1016/j.ncl.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To date, Alzheimer disease drug candidates have produced negative results in human trials, and progress in moving new targets out of the laboratory and into trials has been slow. However, based on 3 decades of previous work, there is reason to hope that amyloid-based and other novel therapies will move at a faster pace toward successful clinical trials. This article highlights selected preclinical research topics that are rapidly advancing in the laboratory.
Collapse
|
9
|
St-Amour I, Cicchetti F, Calon F. Immunotherapies in Alzheimer's disease: Too much, too little, too late or off-target? Acta Neuropathol 2016; 131:481-504. [PMID: 26689922 DOI: 10.1007/s00401-015-1518-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 12/19/2022]
Abstract
Years of research have highlighted the importance of the immune system in Alzheimer's disease (AD), a system that, if manipulated during strategic time windows, could potentially be tackled to treat this disorder. However, to minimize adverse effects, it is essential to first grasp which exact aspect of it may be targeted. Several clues have been collected over the years regarding specific immune players strongly modulated during different stages of AD progression. However, the inherent complexity of the immune system as well as conflicting data make it quite challenging to pinpoint a specific immune target in AD. In this review, we discuss immune-related abnormalities observed in the periphery as well as in the brain of AD patients, in relation to known risk factors of AD such as genetics, type-2 diabetes or obesity, aging, physical inactivity and hypertension. Although not investigated yet in clinical trials, C5 complement system component, CD40/CD40L interactions and the CXCR2 pathway are altered in AD patients and may represent potential therapeutic targets. Immunotherapies tested in a clinical context, those aiming to attenuate the innate immune response and those used to facilitate the removal of pathological proteins, are further discussed to try and understand the causes of the limited success reached. The prevailing eagerness to move basic research data to clinic should not overshadow the fact that a careful preclinical characterization of a drug is still required to ultimately improve the chance of clinical success. Finally, specific elements to consider prior to initiate large-scale trials are highlighted and include the replication of preclinical data, the use of small-scale human studies, the sub-typing of AD patients and the determination of pharmacokinetic and pharmacodynamics parameters such as brain bioavailability and target engagement.
Collapse
Affiliation(s)
- Isabelle St-Amour
- Axe Neurosciences, Centre de Recherche du CHU de Québec, 2705, Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
- Département de Psychiatrie & Neurosciences, Faculté de médecine, Université Laval, Quebec, QC, Canada
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada
| | - Francesca Cicchetti
- Axe Neurosciences, Centre de Recherche du CHU de Québec, 2705, Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
- Département de Psychiatrie & Neurosciences, Faculté de médecine, Université Laval, Quebec, QC, Canada
| | - Frédéric Calon
- Axe Neurosciences, Centre de Recherche du CHU de Québec, 2705, Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
10
|
Avila J, Pallas N, Bolós M, Sayas CL, Hernandez F. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opin Ther Targets 2016; 20:653-61. [PMID: 26652296 DOI: 10.1517/14728222.2016.1131269] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Microtubule associated protein tau, a protein mainly expressed in neurons, plays an important role in several diseases related to dementia, named tauopathies. Alzheimer disease is the most relevant tauopathy. The role of tau protein in dementia is now a topic under discussion, and is the focus of this review. AREAS COVERED We have covered two major areas: tau pathology and tau as a therapeutic target. Tau pathology is mainly related to a gain of toxic function due to an abnormal accumulation, aberrant modifications (such as hyperphosphorylation and truncation, among others) and self-aggregation of tau into oligomers or larger structures. Also, tau can be found extracellularly in a toxic form. Tau-based therapy is mainly centered on avoiding the gain of these toxic functions of tau. EXPERT OPINION Tau therapies are focused on lowering tau levels, mainly of modified tau species that could be toxic for neurons (phosphorylated, truncated or aggregated tau), in intracellular or extracellular form. Decreasing the levels of those toxic species is a possible therapeutic strategy.
Collapse
Affiliation(s)
- Jesús Avila
- a Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) , Madrid , Spain.,b Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM , Madrid , Spain
| | - Noemí Pallas
- a Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) , Madrid , Spain.,b Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM , Madrid , Spain
| | - Marta Bolós
- a Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) , Madrid , Spain.,b Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM , Madrid , Spain
| | - C Laura Sayas
- c Centre for Biomedical Research of the Canary Islands (CIBICAN), Institute for Biomedical Technologies (ITB) , University of La Laguna (ULL) , Tenerife , Spain
| | - Felix Hernandez
- a Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) , Madrid , Spain.,b Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM , Madrid , Spain
| |
Collapse
|
11
|
Stella F, Radanovic M, Canineu PR, de Paula VJR, Forlenza OV. Anti-dementia medications: current prescriptions in clinical practice and new agents in progress. Ther Adv Drug Saf 2015; 6:151-65. [PMID: 26301069 DOI: 10.1177/2042098615592116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Almost three decades after the publication of the first clinical studies with tacrine, the pharmacological treatment of Alzheimer's disease (AD) remains a challenge. Randomized clinical trials have yielded evidence of significant - although modest and transient - benefit from cholinergic replacement therapy for people diagnosed with AD, and disease modification with antidementia compounds is still an urgent, unmet need. The natural history of AD is very long, and its pharmacological treatment must acknowledge different needs according to the stage of the disease process. Cognitive and functional deterioration evolves gradually since the onset of clinical symptoms, which may be preceded by several years or perhaps decades of silent, presymptomatic neurodegeneration. Therefore, the pharmacological treatment of AD must ideally comprise both a symptomatic effect to preserve or improve cognition and a disease-modifying effect to tackle the progression of the pathological process. Primary prevention is the ultimate goal, should these strategies be delivered to patients with preclinical AD. In this article, we briefly address the pharmaceutical compounds that are currently used for the symptomatic treatment of AD and discuss the ongoing strategies designed to modify its natural course.
Collapse
Affiliation(s)
- Florindo Stella
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, and UNESP - Universidade Estadual Paulista, Biosciences Institute, Campus of Rio Claro, São Paulo, Brazil
| | - Márcia Radanovic
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo Renato Canineu
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vanessa J R de Paula
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Orestes V Forlenza
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Rua Dr. Ovídio Pires de Campos 785, 05403-010 - São Paulo, Brazil
| |
Collapse
|
12
|
Immunotherapy Applied to Neuropsychiatric Disorders: a New Perspective of Treatment. J Mol Neurosci 2015; 57:139-41. [PMID: 26026601 DOI: 10.1007/s12031-015-0587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
Manipulation of the immunological system has lead to groundbreaking discoveries that have had deep impact in demographic and health worldwide. Newer research has made it clear that immunological treatment of neurological and neuropsychiatric diseases may present itself as a viable solution to many ailments. In this mini-review, results of immunotherapeutic studies are presented, indicating that this field may be important in elucidating the etiology of many neurological conditions, and presenting a therapeutic alternative to current treatments.
Collapse
|
13
|
Crespi GAN, Hermans SJ, Parker MW, Miles LA. Molecular basis for mid-region amyloid-β capture by leading Alzheimer's disease immunotherapies. Sci Rep 2015; 5:9649. [PMID: 25880481 PMCID: PMC4549621 DOI: 10.1038/srep09649] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/12/2015] [Indexed: 12/24/2022] Open
Abstract
Solanezumab (Eli Lilly) and crenezumab (Genentech) are the leading clinical antibodies targeting Amyloid-β (Aβ) to be tested in multiple Phase III clinical trials for the prevention of Alzheimer's disease in at-risk individuals. Aβ capture by these clinical antibodies is explained here with the first reported mid-region Aβ-anti-Aβ complex crystal structure. Solanezumab accommodates a large Aβ epitope (960 Å(2) buried interface over residues 16 to 26) that forms extensive contacts and hydrogen bonds to the antibody, largely via main-chain Aβ atoms and a deeply buried Phe19-Phe20 dipeptide core. The conformation of Aβ captured is an intermediate between observed sheet and helical forms with intramolecular hydrogen bonds stabilising residues 20-26 in a helical conformation. Remarkably, Aβ-binding residues are almost perfectly conserved in crenezumab. The structure explains the observed shared cross reactivity of solanezumab and crenezumab with proteins abundant in plasma that exhibit this Phe-Phe dipeptide.
Collapse
MESH Headings
- Alzheimer Disease/therapy
- Amyloid beta-Peptides/chemistry
- Amyloid beta-Peptides/immunology
- Amyloid beta-Peptides/metabolism
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Binding Sites
- Crystallography, X-Ray
- Dipeptides/blood
- Dipeptides/immunology
- Humans
- Hydrogen Bonding
- Immunotherapy
- Molecular Dynamics Simulation
- Protein Structure, Tertiary
Collapse
Affiliation(s)
- Gabriela A. N. Crespi
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Stefan J. Hermans
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Michael W. Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Luke A. Miles
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|