1
|
Guo H, Li H, Jia Z, Ma S, Zhang J. Edaravone dexborneol attenuates cognitive impairment in a rat model of vascular dementia by inhibiting hippocampal oxidative stress and inflammatory responses and modulating the NMDA receptor signaling pathway. Brain Res 2024; 1833:148917. [PMID: 38582415 DOI: 10.1016/j.brainres.2024.148917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Exploring the intricate pathogenesis of Vascular Dementia (VD), there is a noted absence of potent treatments available in the current medical landscape. A new brain-protective medication developed in China, Edaravone dexboeol (EDB), has shown promise due to its antioxidant and anti-inflammatory properties, albeit with a need for additional research to elucidate its role and mechanisms in VD contexts. In a research setup, a VD model was established utilizing Sprague-Dawley (SD) rats, subjected to permanent bilateral typical carotid artery occlusion (2VO). Behavioral assessment of the rats was conducted using the Bederson test and pole climbing test, while cognitive abilities, particularly learning and memory, were evaluated via the novel object recognition test and the Morris water maze test. Ensuing, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), IL-1β, IL-6, IL-4, and tumor necrosis factor-α (TNF-α) were determined through Enzyme-Linked Immunosorbent Assay (ELISA). Synaptic plasticity-related proteins, synaptophysin (SYP), post-synaptic density protein 95 (PSD-95), and N-methyl-D-aspartate (NMDA) receptor proteins (NR1, NR2A, NR2B) were investigated via Western blotting technique. The findings imply that EDB has the potential to ameliorate cognitive deficiencies, attributed to VD, by mitigating oxidative stress, dampening inflammatory responses, and modulating the NMDA receptor signaling pathway, furnishing new perspectives into EDB's mechanism and proposing potential avenues for therapeutic strategies in managing VD.
Collapse
Affiliation(s)
- Hui Guo
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan,China; First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Haodong Li
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan,China; First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhisheng Jia
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan,China; First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Shuyu Ma
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan,China; First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jin Zhang
- Department of Neurology, First Hospital, Shanxi Medical University, Taiyuan,China.
| |
Collapse
|
2
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Reiländer A, Pilatus U, Schüre JR, Shrestha M, Deichmann R, Nöth U, Hattingen E, Gracien RM, Wagner M, Seiler A. Impaired oxygen extraction and adaptation of intracellular energy metabolism in cerebral small vessel disease. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100162. [PMID: 36851996 PMCID: PMC9957754 DOI: 10.1016/j.cccb.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND We aimed to investigate whether combined phosphorous (31P) magnetic resonance spectroscopic imaging (MRSI) and quantitative T 2 ' mapping are able to detect alterations of the cerebral oxygen extraction fraction (OEF) and intracellular pH (pHi) as markers the of cellular energy metabolism in cerebral small vessel disease (SVD). MATERIALS AND METHODS 32 patients with SVD and 17 age-matched healthy control subjects were examined with 3-dimensional 31P MRSI and oxygenation-sensitive quantitative T 2 ' mapping (1/ T 2 ' = 1/T2* - 1/T2) at 3 Tesla (T). PHi was measured within the white matter hyperintensities (WMH) in SVD patients. Quantitative T 2 ' values were averaged across the entire white matter (WM). Furthermore, T 2 ' values were extracted from normal-appearing WM (NAWM) and the WMH and compared between patients and controls. RESULTS Quantitative T 2 ' values were significantly increased across the entire WM and in the NAWM in patients compared to control subjects (149.51 ± 16.94 vs. 138.19 ± 12.66 ms and 147.45 ± 18.14 vs. 137.99 ± 12.19 ms, p < 0.05). WM T 2 ' values correlated significantly with the WMH load (ρ=0.441, p = 0.006). Increased T 2 ' was significantly associated with more alkaline pHi (ρ=0.299, p < 0.05). Both T 2 ' and pHi were significantly positively correlated with vascular pulsatility in the distal carotid arteries (ρ=0.596, p = 0.001 and ρ=0.452, p = 0.016). CONCLUSIONS This exploratory study found evidence of impaired cerebral OEF in SVD, which is associated with intracellular alkalosis as an adaptive mechanism. The employed techniques provide new insights into the pathophysiology of SVD with regard to disease-related consequences on the cellular metabolic state.
Collapse
Key Words
- BBB, blood-brain barrier
- CBF, cerebral blood flow
- CBV, cerebral blood volume
- CMRO2, Cerebral metabolic rate of oxygen
- Cellular energy metabolism
- DTI, diffusion tensor imaging
- GE, gradient echo
- Hb, hemoglobin
- ICA, internal carotid artery
- MR spectroscopy
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- MRSI, magnetic resonance spectroscopic imaging
- Microstructural impairment
- NAWM, normal-appearing white matter
- OEF, oxygen extraction fraction
- Oxygen extraction fraction
- PI, Pulsatility index
- RF, radio frequency
- SVD, cerebral small vessel disease
- Small vessel disease
- TR, repetition time
- WM, white matter
- WMH, white matter hyperintensities
- pHi, intracellular pH
- quantitative MRI
Collapse
Affiliation(s)
- Annemarie Reiländer
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Jan-Rüdiger Schüre
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Manoj Shrestha
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Marlies Wagner
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
- Institute of Neuroradiology, Goethe University Hospital Frankfurt, Frankfurt Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University Hospital Frankfurt, Schleusenweg 2-16, Frankfurt 60528, Germany
- Brain Imaging Center, Goethe University Hospital Frankfurt, Frankfurt Germany
| |
Collapse
|
4
|
Cirillo G, Pepe R, Siciliano M, Ippolito D, Ricciardi D, de Stefano M, Buonanno D, Atripaldi D, Abbadessa S, Perfetto B, Sharbafshaaer M, Sepe G, Bonavita S, Iavarone A, Todisco V, Papa M, Tedeschi G, Esposito S, Trojsi F. Long-Term Neuromodulatory Effects of Repetitive Transcranial Magnetic Stimulation (rTMS) on Plasmatic Matrix Metalloproteinases (MMPs) Levels and Visuospatial Abilities in Mild Cognitive Impairment (MCI). Int J Mol Sci 2023; 24:ijms24043231. [PMID: 36834642 PMCID: PMC9961904 DOI: 10.3390/ijms24043231] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique that is used against cognitive impairment in mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the neurobiological mechanisms underlying the rTMS therapeutic effects are still only partially investigated. Maladaptive plasticity, glial activation, and neuroinflammation, including metalloproteases (MMPs) activation, might represent new potential targets of the neurodegenerative process and progression from MCI to AD. In this study, we aimed to evaluate the effects of bilateral rTMS over the dorsolateral prefrontal cortex (DLPFC) on plasmatic levels of MMP1, -2, -9, and -10; MMPs-related tissue inhibitors TIMP1 and TIMP2; and cognitive performances in MCI patients. Patients received high-frequency (10 Hz) rTMS (MCI-TMS, n = 9) or sham stimulation (MCI-C, n = 9) daily for four weeks, and they were monitored for six months after TMS. The plasmatic levels of MMPs and TIMPs and the cognitive and behavioral scores, based on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Beck Depression Inventory II, Beck Anxiety Inventory, and Apathy Evaluation Scale, were assessed at baseline (T0) and after 1 month (T1) and 6 months (T2) since rTMS. In the MCI-TMS group, at T2, plasmatic levels of MMP1, -9, and -10 were reduced and paralleled by increased plasmatic levels of TIMP1 and TIMP2 and improvement of visuospatial performances. In conclusion, our findings suggest that targeting DLPFC by rTMS might result in the long-term modulation of the MMPs/TIMPs system in MCI patients and the neurobiological mechanisms associated with MCI progression to dementia.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| | - Roberta Pepe
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mattia Siciliano
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Domenico Ippolito
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Neurologic Unit, Centro Traumatologico Ortopedico (CTO) Hospital, Azienda Ospedaliera di Rilievo Nazionale (AORN) “Ospedali Dei Colli”, 80138 Naples, Italy
| | - Dario Ricciardi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Manuela de Stefano
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Daniela Buonanno
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Danilo Atripaldi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Salvatore Abbadessa
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Brunella Perfetto
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Minoo Sharbafshaaer
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Sepe
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Simona Bonavita
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandro Iavarone
- Neurologic Unit, Centro Traumatologico Ortopedico (CTO) Hospital, Azienda Ospedaliera di Rilievo Nazionale (AORN) “Ospedali Dei Colli”, 80138 Naples, Italy
| | - Vincenzo Todisco
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michele Papa
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gioacchino Tedeschi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Sabrina Esposito
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Trojsi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
5
|
Zhang J, Zhang Y, Liu Y, Niu X. Naringenin Attenuates Cognitive Impairment in a Rat Model of Vascular Dementia by Inhibiting Hippocampal Oxidative Stress and Inflammatory Response and Promoting N-Methyl-D-Aspartate Receptor Signaling Pathway. Neurochem Res 2022; 47:3402-3413. [PMID: 36028734 DOI: 10.1007/s11064-022-03696-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
Vascular dementia (VaD) is the second most common form of dementia globally, yet there are no efficient treatments. Naringenin, a natural flavonoid, exerts antioxidative, anti-inflammatory, and neuroprotective properties; however, its potential effect on VaD remain unclear. Herein, the purpose of present study was to elucidate whether naringenin attenuates cognitive dysfunction in VaD via inhibiting hippocampal oxidative stress and inflammatory response, and promoting N-methyl-D-aspartate receptors (NMDARs) signaling pathway. A rat model of VaD was established by permanent bilateral common carotid artery occlusion [2-vessel occlusion (2VO)]. Behavioral performance analyses results revealed that administration of naringenin improves cognitive impairment in rats with VaD according to the new object recognition test and the Morris water maze test. In addition, naringenin attenuated hippocampal oxidative stress by reducing reactive oxygen species generation, decreasing malondialdehyde content and recombinant reactive oxygen species modulator 1 (Romo-1) expression, and increasing superoxide dismutase and glutathione peroxidase activities in the hippocampus of VaD rats. Moreover, naringenin decreased the proinflammatory cytokines (IL-1β, IL-6, and TNF-α) levels and increased the anti-inflammatory cytokines (IL-10 and IL-4) levels in the hippocampus of 2VO surgery-treated rats, attenuating hippocampal inflammatory response during VaD. Furthermore, naringenin promoted synaptophysin (SYP), postsynaptic density protein 95 (PSD95), N-methyl-Daspartic acid receptor 1 (NR1) and N-methyl-D-aspartate receptor subunit 2B (NR2B) expressions levels in hippocampus of VaD rats. Collectively, these findings indicated that naringenin mitigates cognitive impairment in VaD rats partly via inhibiting hippocampal oxidative stress and inflammatory response and restoring NMDARs signaling pathway.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neurology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Yingze District, Taiyuan, 030000, Shanxi, People's Republic of China
| | - Yu Zhang
- Department of Neurology, Shanxi Hospital of Integrated Traditional and Western Medicine, Taiyuan, 030000, Shanxi, People's Republic of China
| | - Yan Liu
- Department of Neurology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Yingze District, Taiyuan, 030000, Shanxi, People's Republic of China
| | - Xiaoyuan Niu
- Department of Neurology, The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Yingze District, Taiyuan, 030000, Shanxi, People's Republic of China.
| |
Collapse
|
6
|
Zhai W, Zhao M, Zhang G, Wang Z, Wei C, Sun L. MicroRNA-Based Diagnosis and Therapeutics for Vascular Cognitive Impairment and Dementia. Front Neurol 2022; 13:895316. [PMID: 35592472 PMCID: PMC9110834 DOI: 10.3389/fneur.2022.895316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is a neurodegenerative disease that is recognized as the second leading cause of dementia after Alzheimer's disease (AD). The underlying pathological mechanism of VCID include crebromicrovascular dysfunction, blood-brain barrier (BBB) disruption, neuroinflammation, capillary rarefaction, and microhemorrhages, etc. Despite the high incidence of VCID, no effective therapies are currently available for preventing or delaying its progression. Recently, pathophysiological microRNAs (miRNAs) in VCID have shown promise as novel diagnostic biomarkers and therapeutic targets. Studies have revealed that miRNAs can regulate the function of the BBB, affect apoptosis and oxidative stress (OS) in the central nervous system, and modulate neuroinflammation and neurodifferentiation. Thus, this review summarizes recent findings on VCID and miRNAs, focusing on their correlation and contribution to the development of VCID pathology.
Collapse
|
7
|
Cui L, Li P, Zhang J, Li X. Exploring the Effect of Enbrel Softgels on PWI Indicators in VCIND Patients. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9681235. [PMID: 35432839 PMCID: PMC9007643 DOI: 10.1155/2022/9681235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/30/2022]
Abstract
Objective To investigate the effect of Enbrel softgels on the head nuclear magnetic (PWI) indices in patients with vascular cognitive impairment-no dementia (vascular cognitive impairment-no dementia, VCIND). Methods Patients with confirmed VCIND hospitalized in the Department of Neurology of the Affiliated Hospital of Hebei University from April 2017 to April 2019 were included in the study, and they were divided into experimental and control groups (30 patients in each group) according to the difference of interventions. The PWI examination and neuropsychological assessment were performed at the beginning of the experiment, 12 w after treatment, and 48 w after treatment in the two groups. Score differences between the two groups and the preliminary demonstration of the clinical value of the MMSE and ADAS-Cog in the diagnosis of VCIND. Results (1) The difference in PWI positivity rate between the two groups at the beginning of the experiment was not statistically significant (P > 0.05); the PWI positivity rate in the experimental group at 12 W was significantly lower than that in the control group (P < 0.05); the difference in PWI positivity rate between the two groups at 48 W was not statistically significant (P < 0.05); (2) the MMSE scores of patients in the experimental group at 12 W and 48 W were higher than those in the control group, and the ADAS-Cog scores were lower than those in the control group (P < 0.05). (3) The diagnostic AUCs of MMSE and ADAS-Cog for VCIND were 0.7960 (95% CI = 0.6411-0.9508, P=0.0037) and 0.9291 (95% CI = 0.8390), respectively (95% CI = 0.8390-1.000, P < 0.0001). Conclusion The addition of Enbrel softgels to concomitant therapy in VCIND patients can lead to changes in their PWI imaging indicators, which in turn can have a significant impact on their neuropsychological indicators, and quantitative analysis scales such as the MMSE and ADAS-Cog can be considered for the diagnostic treatment of VCIND.
Collapse
Affiliation(s)
- Lei Cui
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China
| | - Pan Li
- Department of Neurology, Baoding No. 1 Central Hospital, Baoding, Hebei 071000, China
| | - Jingchen Zhang
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China
| | - Xiaofang Li
- Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China
| |
Collapse
|
8
|
Habituation of Somatosensory Evoked Potentials in Patients with Alzheimer’s Disease and Those with Vascular Dementia. Medicina (B Aires) 2021; 57:medicina57121364. [PMID: 34946308 PMCID: PMC8708528 DOI: 10.3390/medicina57121364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Background and Objectives: The most prevalent dementia are Alzheimer’s disease and vascular dementia. There is evidence that cortical synaptic function may differ in these two conditions. Habituation of cortical responses to repeated stimuli is a well-preserved phenomenon in a normal brain cortex, related to an underlying mechanism of synaptic efficacy regulation. Lack of habituation represents a marker of synaptic dysfunction. The purpose of this study was to assess the habituation of somatosensory evoked potentials (SEPs) in 29 patients affected by mild-to-moderate Alzheimer’s disease (AD-type) or vascular (VD-type) dementia. Materials and Methods: All patients underwent a clinical history interview, neuropsychological evaluation, and neuroimaging examination. SEPs were elicited by electrical stimulation of the right median nerve at the wrist. Six-hundred stimuli were delivered, and cortical responses divided in three blocks of 200. Habituation was calculated by measuring changes of N20 amplitude from block 1 to block 3. SEP variables recorded in patients were compared with those recorded in 15 age- and gender-matched healthy volunteers. Results: SEP recordings showed similar N20 amplitudes in AD-type and VD-type patients in block 1, that were higher than those recorded in controls. N20 amplitude decreased from block 1 to block 3 (habituation) in normal subjects and in VD-type patients, whereas in AD-type patients it remained unchanged (lack of habituation). Conclusions: The findings suggest that neurophysiologic mechanisms of synaptic efficacy that underneath habituation are impaired in patients with AD-type dementia but not in patients with VD-type dementia. SEPs habituation may contribute to early distinction of Alzheimer’s disease vs. vascular dementia.
Collapse
|
9
|
Lim D, Jeong JH, Song J. Lipocalin 2 regulates iron homeostasis, neuroinflammation, and insulin resistance in the brains of patients with dementia: Evidence from the current literature. CNS Neurosci Ther 2021; 27:883-894. [PMID: 33945675 PMCID: PMC8265939 DOI: 10.1111/cns.13653] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
Dementia accompanied by memory loss is considered one of the most common neurodegenerative diseases worldwide, and its prevalence is gradually increasing. Known risk factors for dementia include genetic background, certain lifestyle and dietary patterns, smoking, iron overload, insulin resistance, and impaired glucose metabolism in the brain. Here, we review recent evidence on the regulatory role of lipocalin 2 (LCN2) in dementia from various perspectives. LCN2 is a neutrophil gelatinase-associated protein that influences diverse cellular processes, including the immune system, iron homeostasis, lipid metabolism, and inflammatory responses. Although its functions within the peripheral system are most widely recognized, recent findings have revealed links between LCN2 and central nervous system diseases, as well as novel roles for LCN2 in neurons and glia. Furthermore, LCN2 may modulate diverse pathological mechanisms involved in dementia. Taken together, LCN2 is a promising therapeutic target with which to address the neuropathology of dementia.
Collapse
Affiliation(s)
- Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Chonnam National University, Gwangju, Korea
| |
Collapse
|
10
|
Xie L, Lu B, Ma Y, Yin J, Zhai X, Chen C, Xie W, Zhang Y, Zheng L, Li P. The 100 most-cited articles about the role of neurovascular unit in stroke 2001-2020: A bibliometric analysis. CNS Neurosci Ther 2021; 27:743-752. [PMID: 33764687 PMCID: PMC8193691 DOI: 10.1111/cns.13636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022] Open
Abstract
Background The neurovascular unit (NVU) is emerging as a potential therapeutic target in neurological conditions, such as stroke, brain injury, Alzheimer's disease, and Parkinson's disease; meanwhile, stroke is the second leading cause of death globally. The purpose of the study is to analyze the most influential articles, authors, countries, and topics in the role of NVU in stroke. Methods The Web of Science (WoS) database was used for bibliometric analysis using the search terms “Stroke” and “Neurovascular unit” on January 1st, 2021. Data were extracted from the WoS database to identify collaborations between authors, countries, organizations, and keywords using VOSviewer (1.6.16 mac). Two bibliometric indicators, the activity index (AI) and category normalized citation impact (CNCI), were computed. The keywords of bursts were also identified by CiteSpace. Results A total of 770 articles were analyzed by VOSviewer. AIs and CNCIs were computed of the eighteen countries according to VOSviewer co‐authorship analysis results. The majority of authors mainly came from the United States and Japan. Romania, Hungary, and Poland have emerged as rising‐star countries. In the 100 most‐cited articles, the number of citations ranged from 1873 to 69, with a total of 15,758 citations. Most articles were published in 2011 and 2012 (n = 13 each), followed by 2009 (n = 11) and 2013, 2014, and 2015 (n = 8 each). Stroke and Journal of Cerebral Blood Flow and Metabolism were the two top journals. EH Lo from Harvard University/ Massachusetts General Hospital was the top first author and corresponding author. Harvard University/Massachusetts General Hospital was the most productive affiliated institution with 15 publications. Conclusion There has been growing attention and efforts made in the field of stroke and NVU. The merit of the above findings may help to shape the research policy in ischemic stroke both at the country and institutional level.
Collapse
Affiliation(s)
- Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Bingwei Lu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Yezhi Ma
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Jiemin Yin
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Xiaozhu Zhai
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
11
|
Mdawar B, Abi Faraj C, Khani M, Shamseddeen W. Episode of mixed mood with psychotic features secondary to Binswanger disease: a case report with a literature review. BMJ Case Rep 2021; 14:14/3/e238957. [PMID: 33664028 PMCID: PMC7934766 DOI: 10.1136/bcr-2020-238957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Neurodegenerative and mood disorders in the geriatric population might exhibit interchangeable cognitive and behavioural symptoms. This overlap in presentation might raise a diagnostic challenge for psychiatrists evaluating elderly patients who are presenting with such symptoms. Additionally, there is limited data published about early psychiatric manifestations of neurodegenerative disorders in the elderly. We report a case of a 71-year-old with a history of refractory depressive disorder and multiple cardiovascular risk factors presenting with verbalisation of suicidal and homicidal intent as well as mixed mood and psychotic symptoms. The patient was diagnosed with Binswanger's disease (BD). We also provide a literature review of challenging early psychiatric presentations of neurocognitive disorders and a summary of similar cases to help facilitate diagnosis of BD cases in future.
Collapse
Affiliation(s)
- Bernadette Mdawar
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Munir Khani
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wael Shamseddeen
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
12
|
Dobrynina LA, Gnedovskaya EV, Zabitova MR, Kremneva EI, Shabalina AA, Makarova AG, Tzipushtanova MM, Filatov AS, Kalashnikova LA, Krotenkova MV. [Clustering of diagnostic MRI signs of cerebral microangiopathy and its relationship with markers of inflammation and angiogenesis]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 120:22-31. [PMID: 33449529 DOI: 10.17116/jnevro202012012222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To perform cluster analysis of MRI signs of cerebral microangiopathy (small vessel disease, SVD) and to clarify the relationship between the isolated groups and circulating markers of inflammation and angiogenesis. MATERIAL AND METHODS The identification of groups of MRI signs (MRI types) using cluster hierarchical agglomerative analysis and iterative algorithm of k-means and assessment of their relationship with serum concentrations of tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor-A (VEGF-A), hypoxia-inducible factor 1-α (HIF1-α) determined by ELISA were performed in 96 patients with SVD (STRIVE, 2013) (65 women, average age 60.91±6.57 years). RESULTS Cluster analysis of MRI signs identified two MRI types of SVD with Fazekas grade 3 of white matter hyperintensity (WMH). MRI type 1 (n=18; 6 women, mean age 59.1±6.8 years) and MRI type 2 (n=22, 15 f., mean age 63.5±6.2 years) did not differ by age, sex, severity of hypertension, presence of other risk factors. MRI type 1 had a statistically significantly more pronounced WMH in the periventricular regions, multiple lacunes and microbleeds, atrophy, severe cognitive impairment and gait disorders compared with MRI type 2. Its formation was associated with a decrease in VEGF-A level. MRI type 2 had the significantly more pronounced juxtacortical WMH, white matter lacunes, in the absence of microbleeds and atrophy, and less severe clinical manifestations compared with MRI type 1. Its formation was associated with an increase in TNF-α level. CONCLUSION Clustering of diagnostic MRI signs into MRI types of SVD with significant differences in the severity of clinical manifestations suggests the pathogenetic heterogeneity of age-related SVD. The relationship of MRI types with circulating markers of different mechanisms of vascular wall and brain damage indicates the dominant role of depletion of angiogenesis in the formation of MRI type 1 and increased inflammation in the formation of MRI type 2. Further studies are needed to clarify the criteria and diagnostic value of differentiation of MRI types of SVD, and also their mechanisms with the definition of pathogenetically justified prevention and treatment of various forms of SVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - A S Filatov
- Research Center of Neurology, Moscow, Russia
| | | | | |
Collapse
|
13
|
Nutma E, Marzin MC, Cillessen SA, Amor S. Autophagy in white matter disorders of the CNS: mechanisms and therapeutic opportunities. J Pathol 2020; 253:133-147. [PMID: 33135781 PMCID: PMC7839724 DOI: 10.1002/path.5576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is a constitutive process that degrades, recycles and clears damaged proteins or organelles, yet, despite activation of this pathway, abnormal proteins accumulate in neurons in neurodegenerative diseases and in oligodendrocytes in white matter disorders. Here, we discuss the role of autophagy in white matter disorders, including neurotropic infections, inflammatory diseases such as multiple sclerosis, and in hereditary metabolic disorders and acquired toxic‐metabolic disorders. Once triggered due to cell stress, autophagy can enhance cell survival or cell death that may contribute to oligodendrocyte damage and myelin loss in white matter diseases. For some disorders, the mechanisms leading to myelin loss are clear, whereas the aetiological agent and pathological mechanisms are unknown for other myelin disorders, although emerging studies indicate that a common mechanism underlying these disorders is dysregulation of autophagic pathways. In this review we discuss the alterations in the autophagic process in white matter disorders and the potential use of autophagy‐modulating agents as therapeutic approaches in these pathological conditions. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Manuel C Marzin
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Saskia Agm Cillessen
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
14
|
Wang J, Lyu H, Chen J, Lin S, Zheng H, Li J, Kong F, Gao J, Yu H, Hu Y, Guo Z. Cortical Alterations Are Associated with Depression in Subcortical Vascular Mild Cognitive Impairment Revealed by Surface-Based Morphometry. J Alzheimers Dis 2020; 78:673-681. [PMID: 33016903 DOI: 10.3233/jad-200156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Late-life depression often coexists with vascular cognitive impairment and affects the quality of life for elders. However, little is known about cortical morphometric interactions between subcortical vascular mild cognitive impairment (svMCI) and concomitant mild depressive symptoms at the early stage. OBJECTIVE We aimed to investigate cortical alterations of svMCI with and without depressive symptoms and determine whether these parameters are associated with depression symptoms and/or cognitive impairments. METHODS Surface based morphometry was performed on 18 svMCI patients with depressive symptoms (svMCI + D), 16 svMCI patients without depressive symptoms (svMCI-D), and 23 normal controls (NC). RESULTS Compared to NC, both svMCI + D and svMCI-D patients exhibited significantly decreased surface area (SA) in many cortical areas. Interestingly, svMCI + D patients showed significantly increased rather than decreased SA in right lateral occipital gyrus (LOG.R), and a consistent trend of increased SA in these areas compared to svMCI-D. In addition, the svMCI + D showed increased gray matter volume of left pericalcarine (periCAL.L) than svMCI-D, whereas svMCI-D showed decreased gray matter volume of periCAL.L than NC. Further correlation analyses revealed that the SA of left superior temporal gyrus (STG.L) and right lateral orbital part of frontal gyrus (lorbFG.R) were significantly correlated with Hamilton depression rating scale of svMCI + D. CONCLUSION In conclusion, these results extend our insight into svMCI and add weight to reevaluation of concomitant early stage depressive symptoms. Moreover, we suggest that LOG.R∖periCAL.L∖STG.L∖lorbFG.R might serve as sensitive and trait-dependent biomarkers to detect concomitant depressive symptoms in svMCI patients.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Hanqing Lyu
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China
| | - Jianxiang Chen
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China
| | - Songjun Lin
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Haotao Zheng
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Jinfang Li
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Fanxin Kong
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Jinyun Gao
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China
| | - Haibo Yu
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China
| | - Yuanming Hu
- Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China
| | - Zhouke Guo
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, P. R. China.,Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| |
Collapse
|
15
|
Dobrynina LA, Zabitova MR, Shabalina AA, Kremneva EI, Akhmetzyanov BM, Gadzhieva ZS, Berdalin AB, Kalashnikova LA, Gnedovskaya EV, Krotenkova MV. MRI Types of Cerebral Small Vessel Disease and Circulating Markers of Vascular Wall Damage. Diagnostics (Basel) 2020; 10:E354. [PMID: 32485815 PMCID: PMC7345277 DOI: 10.3390/diagnostics10060354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
The evaluation of the clustering of magnetic resonance imaging (MRI) signs into MRI types and their relationship with circulating markers of vascular wall damage were performed in 96 patients with cerebral small vessel disease (cSVD) (31 men and 65 women; mean age, 60.91 ± 6.57 years). The serum concentrations of the tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor-A (VEGF-A), and hypoxia-inducible factor 1-α (HIF-1α) were investigated in 70 patients with Fazekas stages 2 and 3 of white matter hyperintensities (WMH) and 21 age- and sex-matched volunteers with normal brain MRI using ELISA. The cluster analysis excluded two patients from the further analysis due to restrictions in their scanning protocol. MRI signs of 94 patients were distributed into two clusters. In the first group there were 18 patients with Fazekas 3 stage WMH. The second group consisted of 76 patients with WMH of different stages. The uneven distribution of patients between clusters limited the subsequent steps of statistical analysis; therefore, a cluster comparison was performed in patients with Fazekas stage 3 WMH, designated as MRI type 1 and type 2 of Fazekas 3 stage. There were no differences in age, sex, degree of hypertension, or other risk factors. MRI type 1 had significantly more widespread WMH, lacunes in many areas, microbleeds, atrophy, severe cognitive and gait impairments, and was associated with downregulation of VEGF-A compared with MRI type 2. MRI type 2 had more severe deep WMH, lacunes in the white matter, no microbleeds or atrophy, and less severe clinical manifestations and was associated with upregulation of TNF-α compared with MRI type 1. The established differences reflect the pathogenetic heterogeneity of cSVD and explain the variations in the clinical manifestations observed in Fazekas stage 3 of this disease.
Collapse
Affiliation(s)
- Larisa A. Dobrynina
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia; (M.R.Z.); (A.A.S.); (E.I.K.); (Z.S.G.); (L.A.K.); (E.V.G.); (M.V.K.)
| | - Maryam R. Zabitova
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia; (M.R.Z.); (A.A.S.); (E.I.K.); (Z.S.G.); (L.A.K.); (E.V.G.); (M.V.K.)
| | - Alla A. Shabalina
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia; (M.R.Z.); (A.A.S.); (E.I.K.); (Z.S.G.); (L.A.K.); (E.V.G.); (M.V.K.)
| | - Elena I. Kremneva
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia; (M.R.Z.); (A.A.S.); (E.I.K.); (Z.S.G.); (L.A.K.); (E.V.G.); (M.V.K.)
| | | | - Zukhra Sh. Gadzhieva
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia; (M.R.Z.); (A.A.S.); (E.I.K.); (Z.S.G.); (L.A.K.); (E.V.G.); (M.V.K.)
| | - Alexander B. Berdalin
- Federal State Budgetary Institution “Federal Center for Cerebrovascular Pathology and Stroke”, 1, stroenie 10, Ostrovityanova, 117342 Moscow, Russia;
| | - Ludmila A. Kalashnikova
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia; (M.R.Z.); (A.A.S.); (E.I.K.); (Z.S.G.); (L.A.K.); (E.V.G.); (M.V.K.)
| | - Elena V. Gnedovskaya
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia; (M.R.Z.); (A.A.S.); (E.I.K.); (Z.S.G.); (L.A.K.); (E.V.G.); (M.V.K.)
| | - Marina V. Krotenkova
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia; (M.R.Z.); (A.A.S.); (E.I.K.); (Z.S.G.); (L.A.K.); (E.V.G.); (M.V.K.)
| |
Collapse
|
16
|
Astrocyte and Oligodendrocyte Cross-Talk in the Central Nervous System. Cells 2020; 9:cells9030600. [PMID: 32138223 PMCID: PMC7140446 DOI: 10.3390/cells9030600] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Over the last decade knowledge of the role of astrocytes in central nervous system (CNS) neuroinflammatory diseases has changed dramatically. Rather than playing a merely passive role in response to damage it is clear that astrocytes actively maintain CNS homeostasis by influencing pH, ion and water balance, the plasticity of neurotransmitters and synapses, cerebral blood flow, and are important immune cells. During disease astrocytes become reactive and hypertrophic, a response that was long considered to be pathogenic. However, recent studies reveal that astrocytes also have a strong tissue regenerative role. Whilst most astrocyte research focuses on modulating neuronal function and synaptic transmission little is known about the cross-talk between astrocytes and oligodendrocytes, the myelinating cells of the CNS. This communication occurs via direct cell-cell contact as well as via secreted cytokines, chemokines, exosomes, and signalling molecules. Additionally, this cross-talk is important for glial development, triggering disease onset and progression, as well as stimulating regeneration and repair. Its critical role in homeostasis is most evident when this communication fails. Here, we review emerging evidence of astrocyte-oligodendrocyte communication in health and disease. Understanding the pathways involved in this cross-talk will reveal important insights into the pathogenesis and treatment of CNS diseases.
Collapse
|
17
|
Neurovascular unit dysregulation, white matter disease, and executive dysfunction: the shared triad of vascular cognitive impairment and Alzheimer disease. GeroScience 2020; 42:445-465. [PMID: 32002785 DOI: 10.1007/s11357-020-00164-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/22/2020] [Indexed: 01/07/2023] Open
Abstract
Executive dysfunction is the most important predictor for loss of independence in dementia. As executive function involves the coordination of distributed cerebral functions, executive function requires healthy white matter. However, white matter is highly vulnerable to cerebrovascular insults, with executive dysfunction being a core feature of vascular cognitive impairment (VCI). At the same time, cerebrovascular pathology, white matter disease, and executive dysfunction are all increasingly recognized as features of Alzheimer disease (AD). Recent studies have characterized the crucial role of glial cells in the pathological changes observed in both VCI and AD. In comorbid VCI and AD, the glial cells of the neurovascular unit (NVU) emerge as important therapeutic targets for the preservation of white matter integrity and executive function. Our synthesis from current research identifies dysregulation of the NVU, white matter disease, and executive dysfunction as a fundamental triad that is common to both VCI and AD. Further study of this triad will be critical for advancing the prevention and management of dementia.
Collapse
|
18
|
Cerebrospinal fluid lipocalin 2 as a novel biomarker for the differential diagnosis of vascular dementia. Nat Commun 2020; 11:619. [PMID: 32001681 PMCID: PMC6992814 DOI: 10.1038/s41467-020-14373-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/03/2020] [Indexed: 12/04/2022] Open
Abstract
The clinical diagnosis of vascular dementia (VaD) is based on imaging criteria, and specific biochemical markers are not available. Here, we investigated the potential of cerebrospinal fluid (CSF) lipocalin 2 (LCN2), a secreted glycoprotein that has been suggested as mediating neuronal damage in vascular brain injuries. The study included four independent cohorts with a total n = 472 samples. LCN2 was significantly elevated in VaD compared to controls, Alzheimer’s disease (AD), other neurodegenerative dementias, and cognitively unimpaired patients with cerebrovascular disease. LCN2 discriminated VaD from AD without coexisting VaD with high accuracy. The main findings were consistent over all cohorts. Neuropathology disclosed a high percentage of macrophages linked to subacute infarcts, reactive astrocytes, and damaged blood vessels in multi-infarct dementia when compared to AD. We conclude that CSF LCN2 is a promising candidate biochemical marker in the differential diagnosis of VaD and neurodegenerative dementias. Diagnosis of vascular dementia is hampered by the lack of biochemical markers for this disease. Here, the authors show that vascular dementia is associated with increased lipocalin-2 in cerebrospinal fluid, compared to controls and patients with other forms of dementia.
Collapse
|
19
|
Fu Z, Iraji A, Caprihan A, Adair JC, Sui J, Rosenberg GA, Calhoun VD. In search of multimodal brain alterations in Alzheimer's and Binswanger's disease. NEUROIMAGE-CLINICAL 2019; 26:101937. [PMID: 31351845 PMCID: PMC7229329 DOI: 10.1016/j.nicl.2019.101937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/16/2019] [Accepted: 07/14/2019] [Indexed: 11/07/2022]
Abstract
Structural and functional brain abnormalities have been widely identified in dementia, but with variable replicability and significant overlap. Alzheimer's disease (AD) and Binswanger's disease (BD) share similar symptoms and common brain changes that can confound diagnosis. In this study, we aimed to investigate correlated structural and functional brain changes in AD and BD by combining resting-state functional magnetic resonance imaging (fMRI) and diffusion MRI. A group independent component analysis was first performed on the fMRI data to extract 49 intrinsic connectivity networks (ICNs). Then we conducted a multi-set canonical correlation analysis on three features, functional network connectivity (FNC) between ICNs, fractional anisotropy (FA) and mean diffusivity (MD). Two inter-correlated components show significant group differences. The first component demonstrates distinct brain changes between AD and BD. AD shows increased cerebellar FNC but decreased thalamic and hippocampal FNC. Such FNC alterations are linked to the decreased corpus callosum FA. AD also has increased MD in the frontal and temporal cortex, but BD shows opposite alterations. The second component demonstrates specific brain changes in BD. Increased FNC is mainly between default mode and sensory regions, while decreased FNC is mainly within the default mode domain and related to auditory regions. The FNC changes are associated with FA changes in posterior/middle cingulum cortex and visual cortex and increased MD in thalamus and hippocampus. Our findings provide evidence of linked functional and structural deficits in dementia and suggest that AD and BD have both common and distinct changes in white matter integrity and functional connectivity. This is the first study to explore multi-modalities changes in different dementia. A multimodal fusion method is applied to identify joint components. Brain abnormalities in different modalities are highly correlated. Alzheimer's and Binswanger's disease share similar brain changes. Alzheimer's and Binswanger's disease also have distinct brain changes.
Collapse
Affiliation(s)
- Zening Fu
- The Mind Research Network, Albuquerque, NM, United States.
| | - Armin Iraji
- The Mind Research Network, Albuquerque, NM, United States
| | | | - John C Adair
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jing Sui
- The Mind Research Network, Albuquerque, NM, United States; Chinese Academy of Sciences (CAS) Centre for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, China
| | - Gary A Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, United States; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
20
|
Kulesh AA, Drobakha VE, Shestakov VV. Cerebral small vessel disease: classification, clinical manifestations, diagnosis, and features of treatment. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2019. [DOI: 10.14412/2074-2711-2019-3s-4-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The paper considers the relevance of the problem of cerebral small vessel disease (CSVD) that is an important cause of ischemic and hemorrhagic stroke, associated with the development of cognitive impairment and complications of antithrombotic therapy. It presents briefly the current issues of etiology and pathogenesis of the disease. Sporadic non-amyloid microangiopathy, cerebral amyloid angiopathy, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) are discussed in detail from the point of view of their clinical presentation, neuroimaging, and features of therapeutic tactics. An algorithm for diagnosing CSVD in patients admitted to hospital for stroke and a differentiated approach to their treatment are proposed. Consideration of the neuroimaging manifestations of CSVD is noted to be necessary for the safe and more effective treatment of patients with cerebrovascular diseases.
Collapse
Affiliation(s)
- A. A. Kulesh
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| | - V. E. Drobakha
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| | - V. V. Shestakov
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| |
Collapse
|
21
|
Fu Z, Caprihan A, Chen J, Du Y, Adair JC, Sui J, Rosenberg GA, Calhoun VD. Altered static and dynamic functional network connectivity in Alzheimer's disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Hum Brain Mapp 2019; 40:3203-3221. [PMID: 30950567 DOI: 10.1002/hbm.24591] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 12/16/2022] Open
Abstract
Subcortical ischemic vascular disease (SIVD) is a major subtype of vascular dementia with features that overlap clinically with Alzheimer's disease (AD), confounding diagnosis. Neuroimaging is a more specific and biologically based approach for detecting brain changes and thus may help to distinguish these diseases. There is still a lack of knowledge regarding the shared and specific functional brain abnormalities, especially functional connectivity changes in relation to AD and SIVD. In this study, we investigated both static functional network connectivity (sFNC) and dynamic FNC (dFNC) between 54 intrinsic connectivity networks in 19 AD patients, 19 SIVD patients, and 38 age-matched healthy controls. The results show that both patient groups have increased sFNC between the visual and cerebellar (CB) domains but decreased sFNC between the cognitive-control and CB domains. SIVD has specifically decreased sFNC within the sensorimotor domain while AD has specifically altered sFNC between the default-mode and CB domains. In addition, SIVD has more occurrences and a longer dwell time in the weakly connected dFNC states, but with fewer occurrences and a shorter dwell time in the strongly connected dFNC states. AD has both similar and opposite changes in certain dynamic features. More importantly, the dynamic features are found to be associated with cognitive performance. Our findings highlight similar and distinct functional connectivity alterations in AD and SIVD from both static and dynamic perspectives and indicate dFNC to be a more important biomarker for dementia since its progressively altered patterns can better track cognitive impairment in AD and SIVD.
Collapse
Affiliation(s)
- Zening Fu
- The Mind Research Network, Albuquerque, New Mexico
| | | | - Jiayu Chen
- The Mind Research Network, Albuquerque, New Mexico
| | - Yuhui Du
- The Mind Research Network, Albuquerque, New Mexico.,School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - John C Adair
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jing Sui
- The Mind Research Network, Albuquerque, New Mexico.,Chinese Academy of Sciences (CAS), Centre for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Gary A Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
22
|
Keep RF, Jones HC, Drewes LR. The year in review: progress in brain barriers and brain fluid research in 2018. Fluids Barriers CNS 2019; 16:4. [PMID: 30717760 PMCID: PMC6362595 DOI: 10.1186/s12987-019-0124-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
This editorial focuses on the progress made in brain barrier and brain fluid research in 2018. It highlights some recent advances in knowledge and techniques, as well as prevalent themes and controversies. Areas covered include: modeling, the brain endothelium, the neurovascular unit, the blood–CSF barrier and CSF, drug delivery, fluid movement within the brain, the impact of disease states, and heterogeneity.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
23
|
Kulesh AA, Drobakha VE, Shestakov VV. Sporadic cerebral non-amyloid microangiopathy: pathogenesis, diagnosis, and features of treatment policy. NEUROLOGY, NEUROPSYCHIATRY, PSYCHOSOMATICS 2018. [DOI: 10.14412/2074-2711-2018-4-13-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- A. A. Kulesh
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| | - V. E. Drobakha
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| | - V. V. Shestakov
- Acad. E.A. Vagner Perm State Medical University, Ministry of Health of Russia
| |
Collapse
|
24
|
Santisteban MM, Iadecola C. Hypertension, dietary salt and cognitive impairment. J Cereb Blood Flow Metab 2018; 38:2112-2128. [PMID: 30295560 PMCID: PMC6282225 DOI: 10.1177/0271678x18803374] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Dementia is growing at an alarming rate worldwide. Although Alzheimer disease is the leading cause, over 50% of individuals diagnosed with Alzheimer disease have vascular lesions at autopsy. There has been an increasing appreciation of the pathogenic role of vascular risk factors in cognitive impairment caused by neurodegeneration. Midlife hypertension is a leading risk factor for late-life dementia. Hypertension alters cerebrovascular structure, impairs the major factors regulating the cerebral microcirculation, and promotes Alzheimer pathology. Experimental studies have identified brain perivascular macrophages as the major free radical source mediating neurovascular dysfunction of hypertension. Recent evidence indicates that high dietary salt may also induce cognitive impairment. Contrary to previous belief, the effect is not necessarily associated with hypertension and is mediated by a deficit in endothelial nitric oxide. Collectively, the evidence suggests a remarkable cellular diversity of the impact of vascular risk factors on the cerebral vasculature and cognition. Whereas long-term longitudinal epidemiological studies are needed to resolve the temporal relationships between vascular risk factors and cognitive dysfunction, single-cell molecular studies of the vasculature in animal models will provide a fuller mechanistic understanding. This knowledge is critical for developing new preventive, diagnostic, and therapeutic approaches for these devastating diseases of the mind.
Collapse
Affiliation(s)
- Monica M Santisteban
- Feil Family Brain and Mind Research Institute Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
25
|
Girouard H, Munter LM. The many faces of vascular cognitive impairment. J Neurochem 2018; 144:509-512. [PMID: 29430652 DOI: 10.1111/jnc.14287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
This Preface introduces the articles of the special issue on "Vascular Dementia" in which several recognized experts provide an overview of this research field. The brain is a highly vascularized organ and consequently, vascular dysfunction and related pathways affect cognitive performance and memory. Vascular dementia or vascular cognitive impairment is the second most common type of dementia after Alzheimer's disease, and both disorders often occur in parallel. With this special issue, we hope to provide insight and a stimulating discussion for the future development of this research field. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- Hélène Girouard
- Department of Pharmacology and Physiology, Faculty of Medicine, Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, Canada Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, Canada
| | - Lisa M Munter
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|