1
|
Beaman MM, Guidugli L, Hammer M, Barrows C, Gregor A, Lee S, Deak KL, McDonald MT, Jensen C, Zaki MS, Masri AT, Hobbs CA, Gleeson JG, Cohen JL. Novel association of Dandy-Walker malformation with CAPN15 variants expands the phenotype of oculogastrointestinal neurodevelopmental syndrome. Am J Med Genet A 2023; 191:2757-2767. [PMID: 37596828 PMCID: PMC11141336 DOI: 10.1002/ajmg.a.63363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Oculogastrointestinal neurodevelopmental syndrome has been described in seven previously published individuals who harbor biallelic pathogenic variants in the CAPN15 gene. Biallelic missense variants have been reported to demonstrate a phenotype of eye abnormalities and developmental delay, while biallelic loss of function variants exhibit phenotypes including microcephaly and craniofacial abnormalities, cardiac and genitourinary malformations, and abnormal neurologic activity. We report six individuals from three unrelated families harboring biallelic deleterious variants in CAPN15 with phenotypes overlapping those previously described for this disorder. Of the individuals affected, four demonstrate radiographic evidence of the classical triad of Dandy-Walker malformation including hypoplastic vermis, fourth ventricle enlargement, and torcular elevation. Cerebellar anomalies have not been previously reported in association with CAPN15-related disease. Here, we present three unrelated families with findings consistent with oculogastrointestinal neurodevelopmental syndrome and cerebellar pathology including Dandy-Walker malformation. To corroborate these novel clinical findings, we present supporting data from the mouse model suggesting an important role for this protein in normal cerebellar development. Our findings add six molecularly confirmed cases to the literature and additionally establish a new association of Dandy-Walker malformation with biallelic CAPN15 variants, thereby expanding the neurologic spectrum among patients affected by CAPN15-related disease.
Collapse
Affiliation(s)
- M Makenzie Beaman
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University, Durham, North Carolina, USA
| | - Lucia Guidugli
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Monia Hammer
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Chelsea Barrows
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
- Laboratory for Pediatric Brain Disease, University of California San Diego, La Jolla, California, USA
| | - Anne Gregor
- Laboratory for Pediatric Brain Disease, University of California San Diego, La Jolla, California, USA
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Sangmoon Lee
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
- Laboratory for Pediatric Brain Disease, University of California San Diego, La Jolla, California, USA
| | - Kristen L Deak
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Marie T McDonald
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| | - Courtney Jensen
- Children's Services, Duke University Health Center, Duke University, Durham, North Carolina, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Amira T Masri
- Department of Pediatrics, Division of Child Neurology, University of Jordan, Amman, Jordan
| | - Charlotte A Hobbs
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
- Laboratory for Pediatric Brain Disease, University of California San Diego, La Jolla, California, USA
| | - Jennifer L Cohen
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Calpains as mechanistic drivers and therapeutic targets for ocular disease. Trends Mol Med 2022; 28:644-661. [PMID: 35641420 PMCID: PMC9345745 DOI: 10.1016/j.molmed.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Ophthalmic neurodegenerative diseases encompass a wide array of molecular pathologies unified by calpain dysregulation. Calpains are calcium-dependent proteases that perpetuate cellular death and inflammation when hyperactivated. Calpain inhibition trials in other organs have faced pharmacological challenges, but the eye offers many advantages for the development and testing of targeted molecular therapeutics, including small molecules, peptides, engineered proteins, drug implants, and gene-based therapies. This review highlights structural mechanisms underlying calpain activation, distinct cellular expression patterns, and in vivo models that link calpain hyperactivity to human retinal and developmental disease. Optimizing therapeutic approaches for calpain-mediated eye diseases can help accelerate clinically feasible strategies for treating calpain dysregulation in other diseased tissues.
Collapse
|
3
|
Zha C, Farah CA, Holt RJ, Ceroni F, Al-Abdi L, Thuriot F, Khan AO, Helaby R, Lévesque S, Alkuraya FS, Kraus A, Ragge NK, Sossin WS. Biallelic variants in the small optic lobe calpain CAPN15 are associated with congenital eye anomalies, deafness and other neurodevelopmental deficits. Hum Mol Genet 2021; 29:3054-3063. [PMID: 32885237 DOI: 10.1093/hmg/ddaa198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Microphthalmia, coloboma and cataract are part of a spectrum of developmental eye disorders in humans affecting ~12 per 100 000 live births. Currently, variants in over 100 genes are known to underlie these conditions. However, at least 40% of affected individuals remain without a clinical genetic diagnosis, suggesting variants in additional genes may be responsible. Calpain 15 (CAPN15) is an intracellular cysteine protease belonging to the non-classical small optic lobe (SOL) family of calpains, an important class of developmental proteins, as yet uncharacterized in vertebrates. We identified five individuals with microphthalmia and/or coloboma from four independent families carrying homozygous or compound heterozygous predicted damaging variants in CAPN15. Several individuals had additional phenotypes including growth deficits, developmental delay and hearing loss. We generated Capn15 knockout mice that exhibited similar severe developmental eye defects, including anophthalmia, microphthalmia and cataract, and diminished growth. We demonstrate widespread Capn15 expression throughout the brain and central nervous system, strongest during early development, and decreasing postnatally. Together, these findings demonstrate a critical role of CAPN15 in vertebrate developmental eye disorders, and may signify a new developmental pathway.
Collapse
Affiliation(s)
- Congyao Zha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Richard J Holt
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Fabiola Ceroni
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Lama Al-Abdi
- Department of Zoology, College of Science, King Saud University, Riyadh 11564, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fanny Thuriot
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada
| | - Arif O Khan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine at Case Western University, Cleveland, Ohio 44195, USA
| | - Rana Helaby
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Sébastien Lévesque
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Canada
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11564, Saudi Arabia
| | - Alison Kraus
- Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | - Nicola K Ragge
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.,Department of Clinical Genetics, West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Foundation Trust, Birmingham B15 2TG, UK
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
4
|
MRI of Capn15 Knockout Mice and Analysis of Capn 15 Distribution Reveal Possible Roles in Brain Development and Plasticity. Neuroscience 2021; 465:128-141. [PMID: 33951504 DOI: 10.1016/j.neuroscience.2021.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
The Small Optic Lobe (SOL) family of calpains are intracellular cysteine proteases that are expressed in the nervous system and play an important role in neuronal development in both Drosophila, where loss of this calpain leads to the eponymous small optic lobes, and in mouse and human, where loss of this calpain leads to eye anomalies. Some human individuals with biallelic variants in CAPN15 also have developmental delay and autism. However, neither the specific effect of the loss of the Capn15 protein on brain development nor the brain regions where this calpain is expressed in the adult is known. Here we show using small animal MRI that mice with the complete loss of Capn15 have smaller brains overall with larger decreases in the thalamus and subregions of the hippocampus. These losses are not seen in Capn15 conditional knockout (KO) mice where Capn15 is knocked out only in excitatory neurons in the adult. Based on β-galactosidase expression in an insert strain where lacZ is expressed under the control of the Capn15 promoter, we show that Capn15 is expressed in adult mice, particularly in neurons involved in plasticity such as the hippocampus, lateral amygdala and Purkinje neurons, and partially in other non-characterized cell types. The regions of the brain in the adult where Capn15 is expressed do not correspond well to the regions of the brain most affected by the complete knockout suggesting distinct roles of Capn15 in brain development and adult brain function.
Collapse
|
5
|
Spinozzi S, Albini S, Best H, Richard I. Calpains for dummies: What you need to know about the calpain family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140616. [PMID: 33545367 DOI: 10.1016/j.bbapap.2021.140616] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
This review was written in memory of our late friend, Dr. Hiroyuki Sorimachi, who, following the steps of his mentor Koichi Suzuki, a pioneer in calpain research, has made tremendous contributions to the field. During his career, Hiro also wrote several reviews on calpain, the last of which, published in 2016, was comprehensive. In this manuscript, we decided to put together a review with the basic information a novice may need to know about calpains. We also tried to avoid similarities with previous reviews and reported the most significant new findings, at the same time highlighting Hiro's contributions to the field. The review will cover a short history of calpain discovery, the presentation of the family, the life of calpain from transcription to activity, human diseases caused by calpain mutations and therapeutic perspectives.
Collapse
Affiliation(s)
- Simone Spinozzi
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Sonia Albini
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Heather Best
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Isabelle Richard
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France.
| |
Collapse
|
6
|
Chen Y, Su Z, Liu F. Effects of functionally diverse calpain system on immune cells. Immunol Res 2021; 69:8-17. [PMID: 33483937 DOI: 10.1007/s12026-021-09177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Calpains are a family of nonlysosomal cysteine proteases, which play important roles in numerous physiological and pathological processes. Locations of them dictates the functions so that they are classified as ubiquitously expressed calpains and tissue-specific calpains. Recent studies are mainly focused on conventional calpains (calpain-1,2) in development and diseases, and increasing people pay attention to other subtypes of calpains but may not been summarized appropriately. Growing evidence suggests that calpains are also involved in immune regulation. However, seldom articles review the regulation of calpains on immune cells. The aim of this article is to review the research progress of each calpain isozyme and the effect of calpains on immune cells, especially the promotion effect of calpains on the immune response of macrophage, neutrophils, dendritic cells, mast cells, natural killed cells, and lymphocytes. These effects would hold great promise for the clinical application of calpains as a practicable therapeutic option in the treatment of immune related diseases.
Collapse
Affiliation(s)
- Yueqi Chen
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.,Department of Immunology, Jiangsu University, Zhenjiang, 212013, China
| | - Fang Liu
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
7
|
Mor-Shaked H, Salah S, Yanovsky-Dagan S, Meiner V, Atawneh OM, Abu-Libdeh B, Elpeleg O, Harel T. Biallelic deletion in a minimal CAPN15 intron in siblings with a recognizable syndrome of congenital malformations and developmental delay. Clin Genet 2021; 99:577-582. [PMID: 33410501 DOI: 10.1111/cge.13920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022]
Abstract
Calpainopathies constitute a heterogeneous group of disorders resulting from deficiencies in calpains, calcium-specific proteases that modulate substrates by limited proteolysis. Clinical manifestations depend on tissue-specific expression of the defective calpain and substrate specificity. CAPN15, encoding the Drosophila small optic lobes (sol) homolog, was recently found to cause various eye defects in individuals carrying bi-allelic missense variants. Here we report on two siblings with manifestations reminiscent of Johanson-Blizzard syndrome including failure to thrive, microcephaly, global developmental delay, dysmorphic features, endocrine abnormalities and congenital malformations, in addition to eye abnormalities. Exome sequencing identified a homozygous 47 base-pair deletion in a minimal intron of CAPN15, including the splice donor site. Sequencing of cDNA revealed single exon skipping, resulting in an out-of-frame deletion with a predicted premature termination codon. These findings expand the phenotypic spectrum associated with CAPN15 variants, and suggest that complete loss-of-function is associated with a recognizable syndrome of congenital malformations and developmental delay, overlapping Johanson-Blizzard syndrome and the recently observed brain defects in Capn15 knockout (KO) mice. Moreover, the data highlight the unique opportunity for indel detection in minimal introns.
Collapse
Affiliation(s)
- Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Somaya Salah
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Genetic Unit, Palestine Red Crescent Society Hospital, Hebron, Palestine
| | | | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Osama M Atawneh
- Pediatric Neurology Unit, Palestine Red Crescent Society Hospital, Hebron, Palestine
| | - Bassam Abu-Libdeh
- Department of Pediatrics, Makassed Hospital and Al-Quds Medical School, East Jerusalem, Palestine
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Isoform Specificity of PKMs during Long-Term Facilitation in Aplysia Is Mediated through Stabilization by KIBRA. J Neurosci 2019; 39:8632-8644. [PMID: 31537706 DOI: 10.1523/jneurosci.0943-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 01/18/2023] Open
Abstract
Persistent activity of protein kinase M (PKM), the truncated form of protein kinase C (PKC), can maintain long-term changes in synaptic strength in many systems, including the hermaphrodite marine mollusk, Aplysia californica Moreover, different types of long-term facilitation (LTF) in cultured Aplysia sensorimotor synapses rely on the activities of different PKM isoforms in the presynaptic sensory neuron and postsynaptic motor neuron. When the atypical PKM isoform is required, the kidney and brain expressed adaptor protein (KIBRA) is also required. Here, we explore how this isoform specificity is established. We find that PKM overexpression in the motor neuron, but not the sensory neuron, is sufficient to increase synaptic strength and that this activity is not isoform-specific. KIBRA is not the rate-limiting step in facilitation since overexpression of KIBRA is neither sufficient to increase synaptic strength, nor to prolong a form of PKM-dependent intermediate synaptic facilitation. However, the isoform specificity of dominant-negative-PKMs to erase LTF is correlated with isoform-specific competition for stabilization by KIBRA. We identify a new conserved region of KIBRA. Different splice isoforms in this region stabilize different PKMs based on the isoform-specific sequence of an α-helix "handle" in the PKMs. Thus, specific stabilization of distinct PKMs by different isoforms of KIBRA can explain the isoform specificity of PKMs during LTF in Aplysia SIGNIFICANCE STATEMENT Long-lasting changes in synaptic plasticity associated with memory formation are maintained by persistent protein kinases. We have previously shown in the Aplysia sensorimotor model that distinct isoforms of persistently active protein kinase Cs (PKMs) maintain distinct forms of long-lasting synaptic changes, even when both forms are expressed in the same motor neuron. Here, we show that, while the effects of overexpression of PKMs are not isoform-specific, isoform specificity is defined by a "handle" helix in PKMs that confers stabilization by distinct splice forms in a previously undefined domain of the adaptor protein KIBRA. Thus, we define new regions in both KIBRA and PKMs that define the isoform specificity for maintaining synaptic strength in distinct facilitation paradigms.
Collapse
|
9
|
Farah CA, Dunn TW, Hastings MH, Ferguson L, Gao C, Gong K, Sossin WS. A role for Numb in Protein kinase M (PKM)-mediated increase in surface AMPA receptors during facilitation in Aplysia. J Neurochem 2019; 150:366-384. [PMID: 31254393 DOI: 10.1111/jnc.14807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
There is considerable evidence from both vertebrates and invertebrates that persistently active protein kinases maintain changes in synaptic strength that underlie memory. In the hermaphrodite marine mollusk, Aplysia californica, truncated forms of protein kinase C (PKC) termed protein kinase Ms have been implicated in both intermediate- and long-term facilitation, an increase in synaptic strength between sensory neurons and motor neurons thought to underlie behavioural sensitization in the animal. However, few substrates have been identified as candidates that could mediate this increase in synaptic strength. PKMs have been proposed to maintain synaptic strength through preventing endocytosis of AMPA receptors. Numb is a conserved regulator of endocytosis that is modulated by phosphorylation. We have identified and cloned Aplysia Numb (ApNumb). ApNumb contains three conserved PKC phosphorylation sites and PKMs generated from classical and atypical Aplysia PKCs can phosphorylate ApNumb in vitro and in cells. Over-expression of ApNumb that lacks the conserved PKC phosphorylation sites blocks increases in surface levels of a pHluorin-tagged Aplysia glutamate receptor measured using live imaging after intermediate- or long-term facilitation. Over-expression of this form of ApNumb did not block increases in synaptic strength seen during intermediate-term facilitation, but did block increases in synaptic strength seen during long-term facilitation. There was no effect of over-expression of this form of ApNumb on other putative Numb targets as measured using increases in calcium downstream of neurotrophins or agonists of metabotropic glutamate receptors. These results suggest that in Aplysia neurons, Numb specifically regulates AMPA receptor trafficking and is an attractive candidate for a target of PKMs in long-term maintenance of synaptic strength. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Margaret H Hastings
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Cherry Gao
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Katrina Gong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Schweitzer B, Schulz JB. Open Science Badges in the Journal of Neurochemistry. J Neurochem 2018; 147:132-136. [PMID: 30069885 DOI: 10.1111/jnc.14536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/07/2023]
Abstract
The Open Science Framework (OSF) has the mission to increase openness, integrity, and reproducibility in research. The Journal of Neurochemistry became a signatory of their Transparency and Openness guidelines in 2016, which provides eight modular standards (Citation standards, Data Transparency, Analytic Methods/Code Transparency, Research Materials Transparency, Design and Analysis Transparency, Study Pre-registration, Analysis Plan Transparency, Replication) with increasing levels of stringency. Furthermore, OSF recommends and offers a collection of practices intended to make scientific processes and results more transparent and available in a standardized way for reuse to people outside the research team. It includes making research materials, data, and laboratory procedures freely accessible online to anyone. This editorial announces the decision of the Journal of Neurochemistry to introduce Open Science Badges, maintained by the Open Science Badges Committee and by the Center for Open Science (COS). The Open Science Badges, visual icons placed on publications, certify that an open practice was followed and signal to readers that an author has shared the corresponding research evidence, thus, allowing an independent researcher to understand how to reproduce the procedure.
Collapse
Affiliation(s)
- Barbara Schweitzer
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,Jülich Aachen Research Alliance (JARA), JARA-Institute Molecular Neuroscience and Neuroimaging, FZ Jülich and RWTH Aachen University, Aachen, Germany
| |
Collapse
|