1
|
Akbarian M, Kianpour M, Tayebi L. Fabricating Multiphasic Angiogenic Scaffolds Using Amyloid/Roxadustat-Assisted High-Temperature Protein Printing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36983-37006. [PMID: 38953207 DOI: 10.1021/acsami.4c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Repairing multiphasic defects is cumbersome. This study presents new soft and hard scaffold designs aimed at facilitating the regeneration of multiphasic defects by enhancing angiogenesis and improving cell attachment. Here, the nonimmunogenic, nontoxic, and cost-effective human serum albumin (HSA) fibril (HSA-F) was used to fabricate thermostable (up to 90 °C) and hard printable polymers. Additionally, using a 10.0 mg/mL HSA-F, an innovative hydrogel was synthesized in a mixture with 2.0% chitosan-conjugated arginine, which can gel in a cell-friendly and pH physiological environment (pH 7.4). The presence of HSA-F in both hard and soft scaffolds led to an increase in significant attachment of the scaffolds to the human periodontal ligament fibroblast (PDLF), human umbilical vein endothelial cell (HUVEC), and human osteoblast. Further studies showed that migration (up to 157%), proliferation (up to 400%), and metabolism (up to 210%) of these cells have also improved in the direction of tissue repair. By examining different in vitro and ex ovo experiments, we observed that the final multiphasic scaffold can increase blood vessel density in the process of per-vascularization as well as angiogenesis. By providing a coculture environment including PDLF and HUVEC, important cross-talk between these two cells prevails in the presence of roxadustat drug, a proangiogenic in this study. In vitro and ex ovo results demonstrated significant enhancements in the angiogenic response and cell attachment, indicating the effectiveness of the proposed design. This approach holds promise for the regeneration of complex tissue defects by providing a conducive environment for vascularization and cellular integration, thus promoting tissue healing.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53233, United States
| | - Maryam Kianpour
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53233, United States
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
2
|
Chopra A, Lang AE, Höglinger G, Outeiro TF. Towards a biological diagnosis of PD. Parkinsonism Relat Disord 2024; 122:106078. [PMID: 38472075 DOI: 10.1016/j.parkreldis.2024.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Since the original description by James Parkinson, Parkinson's disease (PD) has intrigued us for over 200 years. PD is a progressive condition that is incurable so far, and affects millions of people worldwide. Over the years, our knowledge has expanded tremendously, and a range of criteria have been put forward and used to try to define PD. However, owing to the complexity of the problem, it is still not consensual how to diagnose and classify a disease that manifests with diverse features, and that responds differently to existing therapies and to those under development. We are now living a time when 'biological' information is becoming abundant, precise, and accessible enabling us to attempt to incorporate different sources of information to classify different forms of PD. These refinements are essential for basic science, as they will enable us to develop improved models for studying PD, and to implement new findings into clinical practice, as this will be the path towards effective personalized medicine.
Collapse
Affiliation(s)
- Avika Chopra
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease, Krembil Brain Institute, University Health Network and the Department of Medicine, University of Toronto, Canada
| | - Günter Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
3
|
Tong Y, Zhu W, Chen J, Wen T, Xu F, Pang J. Discovery of Small-Molecule Degraders for Alpha-Synuclein Aggregates. J Med Chem 2023. [PMID: 37267712 DOI: 10.1021/acs.jmedchem.3c00274] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Alpha-synuclein (αSyn) species, especially the oligomers and fibers, are associated with multiple neurodegenerative diseases and cannot be directly targeted under the conventional pharmacological paradigm. Proteolysis-targeting chimera technology confers degradation of various "undruggable" targets; however, hardly any small-molecule degrader for αSyn aggregates has been reported yet. Herein, by using the probe molecule sery308 as a warhead, a series of small-molecule degraders for αSyn aggregates were designed and synthesized. Their degradation effects on αSyn aggregates were evaluated on a modified pre-formed fibril-seeding cell model. Compound 2b exhibited the highest degradation efficiency (DC50 = 7.51 ± 0.53 μM) with high selectivity. Mechanistic exploration revealed that both proteasomal and lysosomal pathways were involved in this kind of degradation. Moreover, the therapeutic effects of 2b were tested on SH-SY5Y (human neuroblastoma cell line) cells and Caenorhabditis elegans. Our results provided a new class of small-molecule candidates against synucleinopathies and broadened the substrate spectrum of PROTAC-based degraders.
Collapse
Affiliation(s)
- Yichen Tong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wentao Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianzhi Wen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization & Innovative Drug Development of Chinese Ministry of Education (MOE) & Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Outeiro TF, Alcalay RN, Antonini A, Attems J, Bonifati V, Cardoso F, Chesselet MF, Hardy J, Madeo G, McKeith I, Mollenhauer B, Moore DJ, Rascol O, Schlossmacher MG, Soreq H, Stefanis L, Ferreira JJ. Defining the Riddle in Order to Solve It: There Is More Than One "Parkinson's Disease". Mov Disord 2023. [PMID: 37156737 DOI: 10.1002/mds.29419] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND More than 200 years after James Parkinsondescribed a clinical syndrome based on his astute observations, Parkinson's disease (PD) has evolved into a complex entity, akin to the heterogeneity of other complex human syndromes of the central nervous system such as dementia, motor neuron disease, multiple sclerosis, and epilepsy. Clinicians, pathologists, and basic science researchers evolved arrange of concepts andcriteria for the clinical, genetic, mechanistic, and neuropathological characterization of what, in their best judgment, constitutes PD. However, these specialists have generated and used criteria that are not necessarily aligned between their different operational definitions, which may hinder progress in solving the riddle of the distinct forms of PD and ultimately how to treat them. OBJECTIVE This task force has identified current in consistencies between the definitions of PD and its diverse variants in different domains: clinical criteria, neuropathological classification, genetic subtyping, biomarker signatures, and mechanisms of disease. This initial effort for "defining the riddle" will lay the foundation for future attempts to better define the range of PD and its variants, as has been done and implemented for other heterogeneous neurological syndromes, such as stroke and peripheral neuropathy. We strongly advocate for a more systematic and evidence-based integration of our diverse disciplines by looking at well-defined variants of the syndrome of PD. CONCLUSION Accuracy in defining endophenotypes of "typical PD" across these different but interrelated disciplines will enable better definition of variants and their stratification in therapeutic trials, a prerequisite for breakthroughs in the era of precision medicine. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Roy N Alcalay
- Neurological Institute, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Angelo Antonini
- Department of Neurosciences (DNS), Padova University, Padova, Italy
| | - Johannes Attems
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Francisco Cardoso
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, United Kingdom
- UCL Movement Disorders Centre, University College London, London, United Kingdom
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Ian McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Olivier Rascol
- Department of Neurosciences, Clinical Investigation Center CIC 1436, Parkinson Toulouse Expert Centre, NS-Park/FCRIN Network and Neuro Toul COEN Centre, Toulouse University Hospital, INSERM, University of Toulouse 3, Toulouse, France
| | - Michael G Schlossmacher
- Program in Neuroscience and Division of Neurology, The Ottawa Hospital, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Hermona Soreq
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leonidas Stefanis
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim J Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- CNS-Campus Neurológico, Torres Vedras, Portugal
| |
Collapse
|
5
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
6
|
Imbriani P, Martella G, Bonsi P, Pisani A. Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiol Dis 2022; 173:105851. [PMID: 36007757 DOI: 10.1016/j.nbd.2022.105851] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
7
|
Lee MH, Jan JS, Thomas JL, Shih YP, Li JA, Lin CY, Ooya T, Barna L, Mészáros M, Harazin A, Porkoláb G, Veszelka S, Deli MA, Lin HY. Cellular Therapy Using Epitope-Imprinted Composite Nanoparticles to Remove α-Synuclein from an In Vitro Model. Cells 2022; 11:cells11162584. [PMID: 36010659 PMCID: PMC9406856 DOI: 10.3390/cells11162584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Several degenerative disorders of the central nervous system, including Parkinson’s disease (PD), are related to the pathological aggregation of proteins. Antibodies against toxic disease proteins, such as α-synuclein (SNCA), are therefore being developed as possible therapeutics. In this work, one peptide (YVGSKTKEGVVHGVA) from SNCA was used as the epitope to construct magnetic molecularly imprinted composite nanoparticles (MMIPs). These composite nanoparticles were characterized by dynamic light scattering (DLS), high-performance liquid chromatography (HPLC), isothermal titration calorimetry (ITC), Brunauer–Emmett–Teller (BET) analysis, and superconducting quantum interference device (SQUID) analysis. Finally, the viability of brain endothelial cells that were treated with MMIPs was measured, and the extraction of SNCA from CRISPR/dCas9a-activated HEK293T cells from the in vitro model system was demonstrated for the therapeutic application of MMIPs.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - James L. Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yuan-Pin Shih
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Jin-An Li
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Chien-Yu Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Tooru Ooya
- Graduate School of Engineering, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
- Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, Kobe 657-8501, Japan
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
- Doctoral School in Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - Gergő Porkoláb
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
- Doctoral School in Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
| | - Maria A. Deli
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary
- Correspondence: (M.A.D.); (H.-Y.L.)
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Correspondence: (M.A.D.); (H.-Y.L.)
| |
Collapse
|
8
|
Koss DJ, Erskine D, Porter A, Palmoski P, Menon H, Todd OGJ, Leite M, Attems J, Outeiro TF. Nuclear alpha-synuclein is present in the human brain and is modified in dementia with Lewy bodies. Acta Neuropathol Commun 2022; 10:98. [PMID: 35794636 PMCID: PMC9258129 DOI: 10.1186/s40478-022-01403-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is pathologically defined by the cytoplasmic accumulation of alpha-synuclein (aSyn) within neurons in the brain. Predominately pre-synaptic, aSyn has been reported in various subcellular compartments in experimental models. Indeed, nuclear alpha-synuclein (aSynNuc) is evident in many models, the dysregulation of which is associated with altered DNA integrity, transcription and nuclear homeostasis. However, the presence of aSynNuc in human brain cells remains controversial, yet the determination of human brain aSynNuc and its pathological modification is essential for understanding synucleinopathies. Here, using a multi-disciplinary approach employing immunohistochemistry, immunoblot, and mass-spectrometry (MS), we confirm aSynNuc in post-mortem brain tissue obtained from DLB and control cases. Highly dependent on antigen retrieval methods, in optimal conditions, intra-nuclear pan and phospho-S129 positive aSyn puncta were observed in cortical neurons and non-neuronal cells in fixed brain sections and in isolated nuclear preparations in all cases examined. Furthermore, an increase in nuclear phospho-S129 positive aSyn immunoreactivity was apparent in DLB cases compared to controls, in both neuronal and non-neuronal cell types. Our initial histological investigations identified that aSynNuc is affected by epitope unmasking methods but present under optimal conditions, and this presence was confirmed by isolation of nuclei and a combined approach of immunoblotting and mass spectrometry, where aSynNuc was approximately tenfold less abundant in the nucleus than cytoplasm. Notably, direct comparison of DLB cases to aged controls identified increased pS129 and higher molecular weight species in the nuclei of DLB cases, suggesting putative pathogenic modifications to aSynNuc in DLB. In summary, using multiple approaches we provide several lines of evidence supporting the presence of aSynNuc in autoptic human brain tissue and, notably, that it is subject to putative pathogenic modifications in DLB that may contribute to the disease phenotype.
Collapse
|
9
|
Role of Mitochondrial Dynamics in Cocaine's Neurotoxicity. Int J Mol Sci 2022; 23:ijms23105418. [PMID: 35628228 PMCID: PMC9145816 DOI: 10.3390/ijms23105418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
The dynamic balance of mitochondrial fission and fusion maintains mitochondrial homeostasis and optimal function. It is indispensable for cells such as neurons, which rely on the finely tuned mitochondria to carry out their normal physiological activities. The potent psychostimulant cocaine impairs mitochondria as one way it exerts its neurotoxicity, wherein the disturbances in mitochondrial dynamics have been suggested to play an essential role. In this review, we summarize the neurotoxicity of cocaine and the role of mitochondrial dynamics in cellular physiology. Subsequently, we introduce current findings that link disturbed neuronal mitochondrial dynamics with cocaine exposure. Finally, the possible role and potential therapeutic value of mitochondrial dynamics in cocaine neurotoxicity are discussed.
Collapse
|
10
|
Insights into the inhibitory mechanism of skullcapflavone II against α-synuclein aggregation and its mediated cytotoxicity. Int J Biol Macromol 2022; 209:426-440. [PMID: 35398391 DOI: 10.1016/j.ijbiomac.2022.03.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022]
Abstract
The dangerous self-assembled and infectious seeds of α-synuclein (αSN) play primary roles in Parkinson's disease. Accordingly, the inhibition of αSN fibrillation and elimination of toxic aggregates are the main therapeutic strategies. Skullcapflavone II (S.FII), a compound isolated from S. pinnatifida, has shown multiple neuroprotective features. Herein, we demonstrated that S.FII inhibited αSN aggregation with IC50 of 7.2 μM. It increased nucleation time and decreased fibril elongation rate and the species formed in the presence of S.FII were unable to act as seeds. Additionally, S.FII inhibited both secondary nucleation and seeding of αSN and disaggregated the mature preformed fibrils as well. The species formed in the presence of S.FII showed less toxicity. It also preserved neurite length and dopamine content of SH-SY5Y cells and attenuated the inflammatory responses in mixed glial cells. The Localized Surface Plasmon Resonance (LSPR) analysis indicated that S.FII interacts with αSN. Docking simulation studies on αSN fibrils revealed that S.FII could interact with the key residues of the salt bridges and glutamine ladder, which might lead to the destruction of fibril's structures. We also showed that S.FII passes through the blood-brain barrier in vitro and in vivo. Overall, these findings elucidate the neuroprotective roles of S.FII in reducing αSN pathogenicity.
Collapse
|
11
|
Usenko TS, Senkevich KA, Bezrukova AI, Baydakova GV, Basharova KS, Zhuravlev AS, Gracheva EV, Kudrevatykh AV, Miliukhina IV, Krasakov IV, Khublarova LA, Fursova IV, Zakharov DV, Timofeeva AA, Irishina YA, Palchikova EI, Zalutskaya NM, Emelyanov AK, Zakharova EY, Pchelina SN. Impaired Sphingolipid Hydrolase Activities in Dementia with Lewy Bodies and Multiple System Atrophy. Mol Neurobiol 2022; 59:2277-2287. [PMID: 35066761 DOI: 10.1007/s12035-021-02688-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
The synucleinopathies are a group of neurodegenerative diseases characterized by the oligomerization of alpha-synuclein protein in neurons or glial cells. Recent studies provide data that ceramide metabolism impairment may play a role in the pathogenesis of synucleinopathies due to its influence on alpha-synuclein accumulation. The aim of the current study was to assess changes in activities of enzymes involved in ceramide metabolism in patients with different synucleinopathies (Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA)). The study enrolled 163 PD, 44 DLB, and 30 MSA patients as well as 159 controls. Glucocerebrosidase, alpha-galactosidase, acid sphingomyelinase enzyme activities, and concentrations of the corresponding substrates (hexosylsphingosine, globotriaosylsphingosine, lysosphingomyelin) were measured by liquid chromatography tandem-mass spectrometry in blood. Expression levels of GBA, GLA, and SMPD1 genes encoding glucoceresobridase, alpha-galactosidase, and acid sphingomyelinase enzymes, correspondently, were analyzed by real-time PCR with TaqMan assay in CD45 + blood cells. Increased hexosylsphingosine concentration was observed in DLB and MSA patients in comparison to PD and controls (p < 0.001) and it was associated with earlier age at onset (AAO) of DLB (p = 0.0008). SMPD1 expression was decreased in MSA compared to controls (p = 0.015). Acid sphingomyelinase activity was decreased in DLB, MSA patients compared to PD patients (p < 0.0001, p < 0.0001, respectively), and in MSA compared to controls (p < 0.0001). Lower acid sphingomyelinase activity was associated with earlier AAO of PD (p = 0.012). Our data support the role of lysosomal dysfunction in the pathogenesis of synucleinopathies, namely, the pronounced alterations of lysosomal activities involved in ceramide metabolism in patients with MSA and DLB.
Collapse
Affiliation(s)
- T S Usenko
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia. .,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia.
| | - K A Senkevich
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia.,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia
| | - A I Bezrukova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
| | - G V Baydakova
- Research Center for Medical Genetics, Moskvorechie str. 1, Moscow, 115478, Russia
| | - K S Basharova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
| | - A S Zhuravlev
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia
| | - E V Gracheva
- Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - A V Kudrevatykh
- Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - I V Miliukhina
- Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia.,Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - I V Krasakov
- The Nikiforov Russian Center of Emergency and Radiation Medicine, Optikov str. 54, 197082, St. Petersburg, Russia
| | - L A Khublarova
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - I V Fursova
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - D V Zakharov
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - A A Timofeeva
- Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia
| | - Y A Irishina
- Institute of the Human Brain of RAS, 9, Pavlova str, St. Petersburg, 197376, Russia
| | - E I Palchikova
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - N M Zalutskaya
- V.M. Bekhterevs National Medical Research Center Psychiatry and Neurology, 3 Bekhterev str., 192019, St. Petersburg, Russia
| | - A K Emelyanov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia.,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia
| | - E Y Zakharova
- Research Center for Medical Genetics, Moskvorechie str. 1, Moscow, 115478, Russia
| | - S N Pchelina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre «Kurchatov Institute», 1, mkr. Orlova roshcha, 188300, Gatchina, Russia.,Pavlov First Saint-Petersburg State Medical University, L'va Tolstogo str. 6-8, 197022, St. Petersburg, Russia.,Institute of Experimental Medicine, 12, Acad. Pavlov Str, 197376, Saint-Petersburg, Russia
| |
Collapse
|
12
|
Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis 2021; 7:65. [PMID: 34312398 PMCID: PMC8313662 DOI: 10.1038/s41531-021-00203-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.
Collapse
Affiliation(s)
- Luis M A Oliveira
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- First Department of Neurology, Medical School of the National and Kapodistrian University of Athens, Athens, Greece
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Sciences, EPFL, Lausanne, Switzerland
| | - David Sulzer
- Department of Psychiatry, Neurology, Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia
| | - Julianna J Tomlinson
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Michael Schlossmacher
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Poul Henning Jensen
- Aarhus University, Department of Biomedicine & DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
| | - Julia Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | | | - Tiago F Outeiro
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| |
Collapse
|
13
|
Khan A, Johnson R, Wittmer C, Maile M, Tatsukawa K, Wong JL, Gill MB, Stocking EM, Natala SR, Paulino AD, Bowden-Verhoek JK, Wrasidlo W, Masliah E, Bonhaus DW, Price DL. NPT520-34 improves neuropathology and motor deficits in a transgenic mouse model of Parkinson's disease. Brain 2021; 144:3692-3709. [PMID: 34117864 DOI: 10.1093/brain/awab214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/09/2022] Open
Abstract
NPT520-34 is a clinical-stage, small molecule being developed for the treatment of Parkinson's disease and other neurodegenerative disorders. The therapeutic potential of NPT520-34 was first suggested by findings from cell-based assays of alpha-synuclein (ASYN) clearance. As reported here, NPT520-34 was subsequently evaluated for therapeutically relevant actions in a transgenic animal model of Parkinson's disease that overexpresses human ASYN and in an acute lipopolysaccharide (LPS)-challenge model using wild-type mice. Daily administration of NPT520-34 to mThy1-ASYN (Line 61) transgenic mice for one or three months resulted in reduced ASYN pathology, reduced expression of markers of neuroinflammation, and improvements in multiple indices of motor function. In an LPS-challenge model using wild-type mice, a single-dose of NPT520-34 reduced LPS-evoked increases in the expression of several pro-inflammatory cytokines in plasma. These findings demonstrate the beneficial effects of NPT520-34 on both inflammation and protein-pathology endpoints, with consequent improvements in motor function in an animal model of Parkinson's disease. These findings further suggest that NPT520-34 may have two complementary actions: (1) to increase the clearance of neurotoxic protein aggregates and (2) to directly attenuate inflammation. NPT520-34 treatment may thereby address two of the predominate underlying pathophysiological aspects of neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Asma Khan
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Robert Johnson
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Carrie Wittmer
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Michelle Maile
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Keith Tatsukawa
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Julian L Wong
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Martin B Gill
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Emily M Stocking
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Srinivasa R Natala
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Amy D Paulino
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Jon K Bowden-Verhoek
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Wolfgang Wrasidlo
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Eliezer Masliah
- Departments of Neuroscience and Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Douglas W Bonhaus
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| | - Diana L Price
- Neuropore Therapies, Inc., 10835 Road to the Cure, Suite 230, San Diego, CA 92121, USA
| |
Collapse
|
14
|
Motyl JA, Strosznajder JB, Wencel A, Strosznajder RP. Recent Insights into the Interplay of Alpha-Synuclein and Sphingolipid Signaling in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126277. [PMID: 34207975 PMCID: PMC8230587 DOI: 10.3390/ijms22126277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/22/2023] Open
Abstract
Molecular studies have provided increasing evidence that Parkinson’s disease (PD) is a protein conformational disease, where the spread of alpha-synuclein (ASN) pathology along the neuraxis correlates with clinical disease outcome. Pathogenic forms of ASN evoke oxidative stress (OS), neuroinflammation, and protein alterations in neighboring cells, thereby intensifying ASN toxicity, neurodegeneration, and neuronal death. A number of evidence suggest that homeostasis between bioactive sphingolipids with opposing function—e.g., sphingosine-1-phosphate (S1P) and ceramide—is essential in pro-survival signaling and cell defense against OS. In contrast, imbalance of the “sphingolipid biostat” favoring pro-oxidative/pro-apoptotic ceramide-mediated changes have been indicated in PD and other neurodegenerative disorders. Therefore, we focused on the role of sphingolipid alterations in ASN burden, as well as in a vast range of its neurotoxic effects. Sphingolipid homeostasis is principally directed by sphingosine kinases (SphKs), which synthesize S1P—a potent lipid mediator regulating cell fate and inflammatory response—making SphK/S1P signaling an essential pharmacological target. A growing number of studies have shown that S1P receptor modulators, and agonists are promising protectants in several neurological diseases. This review demonstrates the relationship between ASN toxicity and alteration of SphK-dependent S1P signaling in OS, neuroinflammation, and neuronal death. Moreover, we discuss the S1P receptor-mediated pathways as a novel promising therapeutic approach in PD.
Collapse
Affiliation(s)
- Joanna A. Motyl
- Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland; (J.A.M.); (A.W.)
| | - Joanna B. Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland;
| | - Agnieszka Wencel
- Department of Hybrid Microbiosystems Engineering, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 St., 02-109 Warsaw, Poland; (J.A.M.); (A.W.)
| | - Robert P. Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland
- Correspondence:
| |
Collapse
|
15
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 412] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Torpey JH, Meade RM, Mistry R, Mason JM, Madine J. Insights Into Peptide Inhibition of Alpha-Synuclein Aggregation. Front Neurosci 2020; 14:561462. [PMID: 33177976 PMCID: PMC7594713 DOI: 10.3389/fnins.2020.561462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
α-Synuclein (aSyn) aggregation is an attractive target for therapeutic development for a range of neurodegenerative conditions, collectively termed synucleinopathies. Here, we probe the mechanism of action of a peptide 4554W, (KDGIVNGVKA), previously identified through intracellular library screening, to prevent aSyn aggregation and associated toxicity. We utilize NMR to probe association and identify that 4554W associates with a "partially aggregated" form of aSyn, with enhanced association occurring over time. We also report the ability of 4554W to undergo modification through deamidation of the central asparagine residue, occurring on the same timescale as aSyn aggregation in vitro, with peptide modification enhancing its association with aSyn. Additionally, we report that 4554W can act to reduce fibril formation of five Parkinson's disease associated aSyn mutants. Inhibitory peptide binding to partially aggregated forms of aSyn, as identified here, is particularly attractive from a therapeutic perspective, as it would eliminate the need to administer the therapy at pre-aggregation stages, which are difficult to diagnose. Taken together the data suggest that 4554W could be a suitable candidate for future therapeutic development against wild-type, and most mutant aSyn aggregation.
Collapse
Affiliation(s)
- James H Torpey
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard M Meade
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Ravina Mistry
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jody M Mason
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jillian Madine
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Yousefi N, Abdollahii S, Kouhbanani MAJ, Hassanzadeh A. Induced pluripotent stem cells (iPSCs) as game-changing tools in the treatment of neurodegenerative disease: Mirage or reality? J Cell Physiol 2020; 235:9166-9184. [PMID: 32437029 DOI: 10.1002/jcp.29800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
Based on investigations, there exist tight correlations between neurodegenerative diseases' incidence and progression and aberrant protein aggregreferates in nervous tissue. However, the pathology of these diseases is not well known, leading to an inability to find an appropriate therapeutic approach to delay occurrence or slow many neurodegenerative diseases' development. The accessibility of induced pluripotent stem cells (iPSCs) in mimicking the phenotypes of various late-onset neurodegenerative diseases presents a novel strategy for in vitro disease modeling. The iPSCs provide a valuable and well-identified resource to clarify neurodegenerative disease mechanisms, as well as prepare a promising human stem cell platform for drug screening. Undoubtedly, neurodegenerative disease modeling using iPSCs has established innovative opportunities for both mechanistic types of research and recognition of novel disease treatments. Most important, the iPSCs have been considered as a novel autologous cell origin for cell-based therapy of neurodegenerative diseases following differentiation to varied types of neural lineage cells (e.g. GABAergic neurons, dopamine neurons, cortical neurons, and motor neurons). In this review, we summarize iPSC-based disease modeling in neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Moreover, we discuss the efficacy of cell-replacement therapies for neurodegenerative disease.
Collapse
Affiliation(s)
- Niloufar Yousefi
- Department of Physiology and Pharmacology, Pasteur Instittableute of Iran, Tehran, Iran.,Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahla Abdollahii
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Stem Cell and Regenerative Medicine Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Vicente Miranda H, Chegão A, Oliveira MS, Fernandes Gomes B, Enguita FJ, Outeiro TF. Hsp27 reduces glycation-induced toxicity and aggregation of alpha-synuclein. FASEB J 2020; 34:6718-6728. [PMID: 32259355 DOI: 10.1096/fj.201902936r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 01/20/2023]
Abstract
α-synuclein (aSyn) is a major player in Parkinson's disease and a group of other disorders collectively known as synucleinopathies, but the precise molecular mechanisms involved are still unclear. aSyn, as virtually all proteins, undergoes a series of posttranslational modifications during its lifetime, which can affect its biology and pathobiology. We recently showed that glycation of aSyn by methylglyoxal (MGO) potentiates its oligomerization and toxicity, induces dopaminergic neuronal cell loss in mice, and affects motor performance in flies. Small heat-shock proteins (sHsps) are molecular chaperones that facilitate the folding of proteins or target misfolded proteins for clearance. Importantly, sHsps were shown to prevent aSyn aggregation and cytotoxicity. Upon treating cells with increasing amounts of methylglyoxal, we found that the levels of Hsp27 decreased in a dose-dependent manner. Therefore, we hypothesized that restoring the levels of Hsp27 in glycating environments could alleviate the pathogenicity of aSyn. Consistently, we found that Hsp27 reduced MGO-induced aSyn aggregation in cells, leading to the formation of nontoxic aSyn species. Remarkably, increasing the levels of Hsp27 suppressed the deleterious effects induced by MGO. Our findings suggest that in glycating environments, the levels of Hsp27 are important for modulating the glycation-associated cellular pathologies in synucleinopathies.
Collapse
Affiliation(s)
- Hugo Vicente Miranda
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ana Chegão
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Márcia S Oliveira
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Bárbara Fernandes Gomes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Fleming Outeiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
19
|
Outeiro TF, Mestre TA. Synuclein Meeting 2019: where we are and where we need to go. J Neurochem 2020; 150:462-466. [PMID: 31441047 DOI: 10.1111/jnc.14825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023]
Abstract
The Synuclein Meetings are a series that has been taking place every 2 years for about 12 years. The Synuclein Meetings bring together leading experts in the field of synuclein and related human conditions with the goal of discussing and advancing the research. In 2019, the Synuclein Meeting is taking place in Ofir, a city in the outskirts of Porto, Portugal. The meeting is entitled 'Synuclein Meeting 2019: Where we are and where we need to go'. It has now been 22 years since the initial report of the genetic and pathological association between alpha-synuclein and Parkinson's disease (PD). The field has grown and matured, and major advances have been made. We are witnessing exciting times, with the first clinical trials being conducted that target synuclein, and bring the hope of novel therapies for patients with PD and their families. However, we still face many challenges and need to address fundamental questions for the field to progress to where we need to go: having biomarkers and effective therapies for PD and other synucleinopathies. In this context, we have designed the Synuclein Meeting 2019 with a different format. The program will include sessions in the format of a round-table discussion, to break away from the more rigid format of regular scientific meetings based on oral presentations. Our goal was to create opportunities for discussing the major questions in the field of synuclein and related human disorders, and challenge dogmatic ideas that require a critical revision in light of the most recent knowledge. In this issue, we assembled a series of comprehensive overviews of major topics, questions, and challenges in the field, that will be discussed in the meeting. We are confident that this special issue will be an instrumental reference for inspiring novel paths for future discoveries in the synuclein field and generate other discussions in the scientific community. This is the Preface for the Special Issue "Synuclein". Cover Image for this issue: doi: 10.1111/jnc.14520.
Collapse
Affiliation(s)
- Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Tiago A Mestre
- Parkinson's Disease and Movement Disorders Center, Division of Neurology, Department of Medicine, The Ottawa Hospital Research Institute, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
20
|
Brás IC, Dominguez-Meijide A, Gerhardt E, Koss D, Lázaro DF, Santos PI, Vasili E, Xylaki M, Outeiro TF. Synucleinopathies: Where we are and where we need to go. J Neurochem 2020; 153:433-454. [PMID: 31957016 DOI: 10.1111/jnc.14965] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022]
Abstract
Synucleinopathies are a group of disorders characterized by the accumulation of inclusions rich in the a-synuclein (aSyn) protein. This group of disorders includes Parkinson's disease, dementia with Lewy bodies (DLB), multiple systems atrophy, and pure autonomic failure (PAF). In addition, genetic alterations (point mutations and multiplications) in the gene encoding for aSyn (SNCA) are associated with familial forms of Parkinson's disease, the most common synucleinopathy. The Synuclein Meetings are a series that has been taking place every 2 years for about 12 years. The Synuclein Meetings bring together leading experts in the field of Synuclein and related human conditions with the goal of discussing and advancing the research. In 2019, the Synuclein meeting took place in Ofir, a city in the outskirts of Porto, Portugal. The meeting, entitled "Synuclein Meeting 2019: Where we are and where we need to go", brought together >300 scientists studying both clinical and molecular aspects of synucleinopathies. The meeting covered a many of the open questions in the field, in a format that prompted open discussions between the participants, and underscored the need for additional research that, hopefully, will lead to future therapies for a group of as of yet incurable disorders. Here, we provide a summary of the topics discussed in each session and highlight what we know, what we do not know, and what progress needs to be made in order to enable the field to continue to advance. We are confident this systematic assessment of where we stand will be useful to steer the field and contribute to filling knowledge gaps that may form the foundations for future therapeutic strategies, which is where we need to go.
Collapse
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - David Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Patrícia I Santos
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, UK.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
21
|
Pena-Diaz S, Pujols J, Ventura S. Small molecules to prevent the neurodegeneration caused by α-synuclein aggregation. Neural Regen Res 2020; 15:2260-2261. [PMID: 32594046 PMCID: PMC7749473 DOI: 10.4103/1673-5374.284993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Samuel Pena-Diaz
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
22
|
Peña-Díaz S, Pujols J, Conde-Giménez M, Čarija A, Dalfo E, García J, Navarro S, Pinheiro F, Santos J, Salvatella X, Sancho J, Ventura S. ZPD-2, a Small Compound That Inhibits α-Synuclein Amyloid Aggregation and Its Seeded Polymerization. Front Mol Neurosci 2019; 12:306. [PMID: 31920537 PMCID: PMC6928008 DOI: 10.3389/fnmol.2019.00306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
α-Synuclein (α-Syn) forms toxic intracellular protein inclusions and transmissible amyloid structures in Parkinson’s disease (PD). Preventing α-Syn self-assembly has become one of the most promising approaches in the search for disease-modifying treatments for this neurodegenerative disorder. Here, we describe the capacity of a small molecule (ZPD-2), identified after a high-throughput screening, to inhibit α-Syn aggregation. ZPD-2 inhibits the aggregation of wild-type α-Syn and the A30P and H50Q familial variants in vitro at substoichiometric compound:protein ratios. In addition, the molecule prevents the spreading of α-Syn seeds in protein misfolding cyclic amplification assays. ZPD-2 is active against different α-Syn strains and blocks their seeded polymerization. Treating with ZPD-2 two different PD Caenorhabditis elegans models that express α-Syn either in muscle or in dopaminergic (DA) neurons substantially reduces the number of α-Syn inclusions and decreases synuclein-induced DA neurons degeneration. Overall, ZPD-2 is a hit compound worth to be explored in order to develop lead molecules for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - María Conde-Giménez
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Anita Čarija
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Esther Dalfo
- Faculty of Medicine, M2, Universitat Autonoma de Barcelona, Barcelona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia, Vic, Spain
| | - Jesús García
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institute for Research and Advance Studies, Barcelona, Spain
| | - Javier Sancho
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain.,Catalan Institute for Research and Advance Studies, Barcelona, Spain
| |
Collapse
|
23
|
Jellinger KA. Animal models of synucleinopathies and how they could impact future drug discovery and delivery efforts. Expert Opin Drug Discov 2019; 14:969-982. [DOI: 10.1080/17460441.2019.1638908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|