1
|
Xu J, Gu J, Pei W, Zhang Y, Wang L, Gao J. The role of lysosomal membrane proteins in autophagy and related diseases. FEBS J 2024; 291:3762-3785. [PMID: 37221945 DOI: 10.1111/febs.16820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
As a self-degrading and highly conserved survival mechanism, autophagy plays an important role in maintaining cell survival and recycling. The discovery of autophagy-related (ATG) genes has revolutionized our understanding of autophagy. Lysosomal membrane proteins (LMPs) are important executors of lysosomal function, and increasing evidence has demonstrated their role in the induction and regulation of autophagy. In addition, the functional dysregulation of the process mediated by LMPs at all stages of autophagy is closely related to neurodegenerative diseases and cancer. Here, we review the role of LMPs in autophagy, focusing on their roles in vesicle nucleation, vesicle elongation and completion, the fusion of autophagosomes and lysosomes, and degradation, as well as their broad association with related diseases.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Anhui Provincial College Key Laboratory of Non-coding RNA Transformation Research on Critical Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|
2
|
Guan L, Jia Z, Xu K, Yang M, Li X, Qiao L, Liu Y, Lin J. Npc1 gene mutation abnormally activates the classical Wnt signalling pathway in mouse kidneys and promotes renal fibrosis. Anim Genet 2024; 55:99-109. [PMID: 38087834 DOI: 10.1111/age.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/29/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2024]
Abstract
Niemann-Pick disease type C1 (NPC1) is a lysosomal lipid storage disease caused by NPC1 gene mutation. Our previous study found that, compared with wild-type (Npc1+/+ ) mice, the renal volume and weight of Npc1 gene mutant (Npc1-/- ) mice were significantly reduced. We speculate that Npc1 gene mutations may affect the basic structure of the kidneys of Npc1-/- mice, and thus affect their function. Therefore, we randomly selected postnatal Day 28 (P28) and P56 Npc1+/+ and Npc1-/- mice, and observed the renal structure and pathological changes by haematoxylin-eosin staining. The level of renal fibrosis was detected by immunofluorescence histochemical techniques, and western blotting was used to detect the expression levels of apoptosis-related proteins and canonical Wnt signalling pathway related proteins. The results showed that compared with Npc1+/+ mice, the kidneys of P28 and P56 Npc1-/- mice underwent apoptosis and fibrosis; furthermore, there were obvious vacuoles in the cytoplasm of renal tubular epithelial cells of P56 Npc1-/- mice, the cell bodies were loose and foam-like, and the canonical Wnt signalling pathway was abnormally activated. These results showed that Npc1 gene mutation can cause pathological changes in the kidneys of mice. As age increased, vacuoles developed in the cytoplasm of renal tubular epithelial cells, and apoptosis of renal cells, abnormal activation of the Wnt signalling pathway, and promotion of renal fibrosis increased.
Collapse
Affiliation(s)
- Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Noninvasive Neuromodulation, Xinxiang, Henan, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanli Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Kannan P, Nanda Kumar MP, Rathinam N, Kumar DT, Ramasamy M. Elucidating the mutational impact in causing Niemann-Pick disease type C: an in silico approach. J Biomol Struct Dyn 2023; 41:8561-8570. [PMID: 36264126 DOI: 10.1080/07391102.2022.2135598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Niemann-Pick disease type C is a rare autosomal recessive of lysosomal storage disorder characterized by impaired intracellular lipid transport and has a tendency to accumulate the fatty acids and glycosphingolipids in a variety of neurovisceral tissues. This work includes computational tools to deciphere the mutational effect in NPC protein. The study initiated with the collection of 471 missense mutations from various databases, which were then analyzed using computational tools. The mutations (G549V, F703S, Q775P and L1244P) were said to be disease associated, altering the biophysical properties, in highly conserved regions and reduces the stability using several in silico methods and were subjected to molecular docking analysis. To analyze the ligand (Itraconazole: a small molecule of antifungal drug class, which is known to inhibit cholesterol export from lysosomes) activity Molecular docking study was performed for all the complex proteins. The average binding affinity was taken and found to be -10.76 kcal/mol (native) and -11.06 kcal/mol (Q775P was located in transmembrane region IV which impacts the sterol-sensing domain of the NPC1 protein and associated with a severe infantile neurological form). Finally, molecular dynamic simulation was performed in duplicate and trajectories were built for the backbone of the RMSD, RMSF, the number of intramolecular hydrogen bonds, the radius of gyration and the SSE percent for both the complex proteins. This work contributes to understand the effectiveness and may provide an insight on the stability of the drug with the complex variant structures.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Kannan
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Madhana Priya Nanda Kumar
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Nithya Rathinam
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - D Thirumal Kumar
- Faculty of Allied Health Science, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Magesh Ramasamy
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
5
|
Bruno F, Camuso S, Capuozzo E, Canterini S. The Antifungal Antibiotic Filipin as a Diagnostic Tool of Cholesterol Alterations in Lysosomal Storage Diseases and Neurodegenerative Disorders. Antibiotics (Basel) 2023; 12:antibiotics12010122. [PMID: 36671323 PMCID: PMC9855188 DOI: 10.3390/antibiotics12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Cholesterol is the most considerable member of a family of polycyclic compounds understood as sterols, and represents an amphipathic molecule, such as phospholipids, with the polar hydroxyl group located in position 3 and the rest of the molecule is completely hydrophobic. In cells, it is usually present as free, unesterified cholesterol, or as esterified cholesterol, in which the hydroxyl group binds to a carboxylic acid and thus generates an apolar molecule. Filipin is a naturally fluorescent antibiotic that exerts a primary antifungal effect with low antibacterial activity, interfering with the sterol stabilization of the phospholipid layers and favoring membrane leakage. This polyene macrolide antibiotic does not bind to esterified sterols, but only to non-esterified cholesterol, and it is commonly used as a marker to label and quantify free cholesterol in cells and tissues. Several lines of evidence have indicated that filipin staining could be a good diagnostic tool for the cholesterol alterations present in neurodegenerative (e.g., Alzheimer's Disease and Huntington Disease) and lysosomal storage diseases (e.g., Niemann Pick type C Disease and GM1 gangliosidosis). Here, we have discussed the uses and applications of this fluorescent molecule in lipid storage diseases and neurodegenerative disorders, exploring not only the diagnostic strength of filipin staining, but also its limitations, which over the years have led to the development of new diagnostic tools to combine with filipin approach.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | - Serena Camuso
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Capuozzo
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.C.); (S.C.)
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (E.C.); (S.C.)
| |
Collapse
|
6
|
Yoon HJ, Jeong J, Kim G, Lee HH, Jang S. The point mutation of the cholesterol trafficking membrane protein NPC1 may affect its proper function in more than a single step: Molecular dynamics simulation study. Comput Biol Chem 2022; 99:107725. [PMID: 35850050 DOI: 10.1016/j.compbiolchem.2022.107725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
The Niemann-Pick type C1 (NPC1) protein is one of the key players of cholesterol trafficking from the lysosome and its function is closely coupled with the Niemann-Pick type C2 (NPC2) protein. The dysfunction of one of these proteins can cause problems in the overall cholesterol homeostasis and leads to a disease, which is called the Niemann-Pick type C (NPC) disease. The parts of the cholesterol transport mechanism by NPC1 have begun to recently emerge, especially after the full-length NPC1 structure was determined from a cryo-EM study. However, many details about the overall cholesterol trafficking process by NPC1 still remain to be elucidated. Notably, the NPC1 could act as one of the target proteins for the control of infectious diseases due to its role as the virus entry point into the cells as well as for cancer treatment due to the inhibitory effect of tumor growth. A mutation of NPC1 can leads to dysfunctions and understanding this process can provide valuable insights into the mechanisms of the corresponding protein and the therapeutic strategies against the disease that are caused by the mutation. It has been found that patients with the point mutation R518W (or R518Q) on the NPC1 show the accumulation of lipids within the lysosomal lumen. In this paper, we report how the corresponding mutation can affect the cholesterol transport process by NPC1 in the different stages by the molecular dynamics simulations. The simulation results show that the point mutation intervenes at least at two different steps during the cholesterol transport by NPC1 and NPC2 in combination, which includes the association step of NPC2 with the NPC1, the cholesterol transfer step from NPC2 to NPC1-NTD while the cholesterol passage within the NPC1 via a channel is relatively unaffected by R518W mutation. The detailed analysis of the resulting simulation trajectories reveals the important structural features that are essential for the proper functioning of the NPC1 for the cholesterol transport, and it shows how the overall structure, which thereby includes the function, can be affected by a single mutation.
Collapse
Affiliation(s)
- Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul, the Republic of Korea
| | - Jian Jeong
- Department of Chemistry, Sejong University, Seoul, the Republic of Korea
| | - Guun Kim
- Department of Physics, Sejong University, Seoul, the Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, Seoul National University, Seoul, the Republic of Korea.
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, the Republic of Korea.
| |
Collapse
|
7
|
Xu C, Fan J. Links between autophagy and lipid droplet dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2848-2858. [PMID: 35560198 DOI: 10.1093/jxb/erac003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/06/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is a catabolic process in which cytoplasmic components are delivered to vacuoles or lysosomes for degradation and nutrient recycling. Autophagy-mediated degradation of membrane lipids provides a source of fatty acids for the synthesis of energy-rich, storage lipid esters such as triacylglycerol (TAG). In eukaryotes, storage lipids are packaged into dynamic subcellular organelles, lipid droplets. In times of energy scarcity, lipid droplets can be degraded via autophagy in a process termed lipophagy to release fatty acids for energy production via fatty acid β-oxidation. On the other hand, emerging evidence suggests that lipid droplets are required for the efficient execution of autophagic processes. Here, we review recent advances in our understanding of metabolic interactions between autophagy and TAG storage, and discuss mechanisms of lipophagy. Free fatty acids are cytotoxic due to their detergent-like properties and their incorporation into lipid intermediates that are toxic at high levels. Thus, we also discuss how cells manage lipotoxic stresses during autophagy-mediated mobilization of fatty acids from lipid droplets and organellar membranes for energy generation.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|