1
|
Jin J, He J, Li X, Ni X, Jin X. The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: A potential target for cancer therapy. Gene 2023; 889:147807. [PMID: 37722609 DOI: 10.1016/j.gene.2023.147807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The PI3K/AKT/mTOR pathway controls key cellular processes, including proliferation and tumor progression, and abnormally high activation of this pathway is a hallmark in human cancers. The post-translational modification, such as Ubiquitination and deubiquitination, fine-tuning the protein level and the activity of members in this pathway play a pivotal role in maintaining normal physiological process. Emerging evidence show that the unbalanced ubiquitination/deubiquitination modification leads to human diseases via PI3K/AKT/mTOR pathway. Therefore, a comprehensive understanding of the ubiquitination/deubiquitination regulation of PI3K/AKT/mTOR pathway may be helpful to uncover the underlying mechanism and improve the potential treatment of cancer via targeting this pathway. Herein, we summarize the latest research progress of ubiquitination and deubiquitination of PI3K/AKT/mTOR pathway, systematically discuss the associated crosstalk between them, as well as focus the clinical transformation via targeting ubiquitination process.
Collapse
Affiliation(s)
- Jiabei Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jian He
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoqi Ni
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
3
|
Duarte-Silva AT, Ximenes LGR, Guimarães-Souza M, Domith I, Paes-de-Carvalho R. Chemical signaling in the developing avian retina: Focus on cyclic AMP and AKT-dependent pathways. Front Cell Dev Biol 2022; 10:1058925. [PMID: 36568967 PMCID: PMC9780464 DOI: 10.3389/fcell.2022.1058925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Communication between developing progenitor cells as well as differentiated neurons and glial cells in the nervous system is made through direct cell contacts and chemical signaling mediated by different molecules. Several of these substances are synthesized and released by developing cells and play roles since early stages of Central Nervous System development. The chicken retina is a very suitable model for neurochemical studies, including the study of regulation of signaling pathways during development. Among advantages of the model are its very well-known histogenesis, the presence of most neurotransmitter systems found in the brain and the possibility to make cultures of neurons and/or glial cells where many neurochemical functions develop in a similar way than in the intact embryonic tissue. In the chicken retina, some neurotransmitters or neuromodulators as dopamine, adenosine, and others are coupled to cyclic AMP production or adenylyl cyclase inhibition since early stages of development. Other substances as vitamin C and nitric oxide are linked to the major neurotransmitter glutamate and AKT metabolism. All these different systems regulate signaling pathways, including PKA, PKG, SRC, AKT and ERK, and the activation of the transcription factor CREB. Dopamine and adenosine stimulate cAMP accumulation in the chick embryo retina through activation of D1 and A2a receptors, respectively, but the onset of dopamine stimulation is much earlier than that of adenosine. However, adenosine can inhibit adenylyl cyclase and modulate dopamine-dependent cAMP increase since early developmental stages through A1 receptors. Dopamine stimulates different PKA as well as EPAC downstream pathways both in intact tissue and in culture as the CSK-SRC pathway modulating glutamate NMDA receptors as well as vitamin C release and CREB phosphorylation. By the other hand, glutamate modulates nitric oxide production and AKT activation in cultured retinal cells and this pathway controls neuronal survival in retina. Glutamate and adenosine stimulate the release of vitamin C and this vitamin regulates the transport of glutamate, activation of NMDA receptors and AKT phosphorylation in cultured retinal cells. In the present review we will focus on these reciprocal interactions between neurotransmitters or neuromodulators and different signaling pathways during retinal development.
Collapse
Affiliation(s)
- A. T. Duarte-Silva
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - L. G. R. Ximenes
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - M. Guimarães-Souza
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - I. Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - R. Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil,Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil,*Correspondence: R. Paes-de-Carvalho,
| |
Collapse
|
4
|
Chen X, Wang K, Jiang S, Sun H, Che X, Zhang M, He J, Wen Y, Liao M, Li X, Zhou X, Song J, Ren X, Yi W, Yang J, Chen X, Yin M, Cheng Y. eEF2K promotes PD-L1 stabilization through inactivating GSK3β in melanoma. J Immunother Cancer 2022; 10:jitc-2021-004026. [PMID: 35347072 PMCID: PMC8961175 DOI: 10.1136/jitc-2021-004026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/21/2022] Open
Abstract
Background Immune checkpoint blockade (ICB) targeting programmed death ligand-1 (PD-L1)/programmed cell death protein-1 (PD-1) pathway has become an attractive strategy for cancer treatment; however, unsatisfactory efficacy has limited its clinical benefits. Therefore, a more comprehensive understanding of the regulation of PD-L1 expression is essential for developing more effective cancer immunotherapy. Recent studies have revealed the important roles of eukaryotic elongation factor 2 kinase (eEF2K) in promoting epithelial-mesenchymal transition (EMT), angiogenesis, tumor cell migration and invasion; nevertheless, the exact role of eEF2K in the regulation of tumor immune microenvironment (TIME) remains largely unknown. Methods In this study, we used a cohort of 38 patients with melanoma who received anti-PD-1 treatment to explore the association between eEF2K expression and immunotherapy efficacy against melanoma. Immunoprecipitation-mass spectrometry analysis and in vitro assays were used to examine the role and molecular mechanism of eEF2K in regulating PD-L1 expression. We also determined the effects of eEF2K on tumor growth and cytotoxicity of CD8+ T cells in TIME in a mouse melanoma model. We further investigated the efficacy of the eEF2K inhibition in combination with anti-PD-1 treatment in vivo. Results High eEF2K expression is correlated with better therapeutic response and longer survival in patients with melanoma treated with PD-1 monoclonal antibody (mAb). Moreover, eEF2K protein expression is positively correlated with PD-L1 protein expression. Mechanistically, eEF2K directly bound to and inactivated glycogen synthase kinase 3 beta (GSK3β) by phosphorylating it at serine 9 (S9), leading to PD-L1 protein stabilization and upregulation, and subsequently tumor immune evasion. Knockdown of eEF2K decreased PD-L1 expression and enhanced CD8+ T cell activity, thus dramatically attenuating murine B16F10 melanoma growth in vivo. Clinically, p-GSK3β/S9 expression is positively correlated with the expressions of eEF2K and PD-L1, and the response to anti-PD-1 immunotherapy. Furthermore, eEF2K inhibitor, NH125 treatment or eEF2K knockdown enhanced the efficacy of PD-1 mAb therapy in a melanoma mouse model. Conclusions Our results suggest that eEF2K may serve as a biomarker for predicting therapeutic response and prognosis in patients receiving anti-PD-1 therapy, reveal a vital role of eEF2K in regulating TIME by controlling PD-L1 expression and provide a potential combination therapeutic strategy of eEF2K inhibition with ICB therapy.
Collapse
Affiliation(s)
- Xisha Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Kuansong Wang
- Department of Pathology, Xiangya hospital and Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Shilong Jiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongyin Sun
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Xuanling Che
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Minghui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiaying He
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mengting Liao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangling Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Xiaoming Zhou
- Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Xingcong Ren
- Department of Cancer Biology and Toxicology, Department of Pharmacology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinming Yang
- Department of Cancer Biology and Toxicology, Department of Pharmacology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| |
Collapse
|
5
|
Jiang M, Qi L, Jin K, Li L, Wu Y, Song D, Gan J, Huang M, Li Y, Song C. eEF2K as a novel metastatic and prognostic biomarker in gastric cancer patients. Pathol Res Pract 2021; 225:153568. [PMID: 34352439 DOI: 10.1016/j.prp.2021.153568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Although eukaryotic elongation factor 2 kinase (eEF2K) has been reported to be a potential oncogenic factor in many human cancers, its usefulness as a clinical prognostic biomarker for gastric cancer has not been investigated. METHODS In this study, data about 540 patients with stomach adenocarcinoma (STAD) were analyzed from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases to determine the expression of eEF2K. Immunohistochemistry (IHC), western blots, and real-time polymerase chain reaction (RT-PCR) were also performed to determine the clinical significance of eEF2K expression in 96 postoperative patients with gastric cancer. Among the 96 patients, 36 had low expression of eEF2K and 60 had high expression. RESULTS Analysis of the TCGA and GEO datasets revealed that eEF2K expression was significantly higher in the STAD tissue samples than in the non-tumorous gastric tissues. IHC, western blots, and RT-PCR confirmed these findings. The high expression level of eEF2K was found to be related to the presence of lymph node metastasis (p = 0.002). Moreover, multivariate analysis showed that eEF2K was an independent indicator of prognosis for overall survival (OS) (hazard ratio [HR] = 1.72, 95% confidence interval [CI] = 1.06-2.79; p = 0.03) and disease-free survival (DFS) (HR = 1.66, 95% CI = 0.997-2.765; p = 0.052) in patients with surgically resected STAD. CONCLUSION Collectively, our findings suggest that eEF2K is a clinical indicator of metastatic and prognostic significance for STAD survival and could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Ling Qi
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Kexin Jin
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Lisha Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Yiming Wu
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Dongfeng Song
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Junqing Gan
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Mei Huang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Yanjing Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, 150 Haping St, Nangang District, Harbin, Heilongjiang 150081, PR China.
| | - Chengxin Song
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|