1
|
Bernardo G, Prado MA, Dashtmian AR, Favaro M, Mauri S, Borsetto A, Marchesan E, Paulo JA, Gygi SP, Finley DJ, Ziviani E. USP14 inhibition enhances Parkin-independent mitophagy in iNeurons. Pharmacol Res 2024; 210:107484. [PMID: 39486496 DOI: 10.1016/j.phrs.2024.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Loss of proteostasis is well documented during physiological aging and depends on the progressive decline in the activity of two major degradative mechanisms: the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway. This decline in proteostasis is exacerbated in age-associated neurodegenerative diseases, such as Parkinson's Disease (PD). In PD, patients develop an accumulation of aggregated proteins and dysfunctional mitochondria, which leads to ROS production, neuroinflammation and neurodegeneration. We recently reported that inhibition of the deubiquitinating enzyme USP14, which is known to enhance both the UPS and autophagy, increases lifespan and rescues the pathological phenotype of two Drosophila models of PD. Studies on the effects of USP14 inhibition in mammalian neurons have not yet been conducted. To close this gap, we exploited iNeurons differentiated from human embryonic stem cells (hESCs), and investigated the effect of inhibiting USP14 in these cultured neurons. Quantitative global proteomics analysis performed following genetic ablation or pharmacological inhibition of USP14 demonstrated that USP14 loss of function specifically promotes mitochondrial autophagy in iNeurons. Biochemical and imaging data also showed that USP14 inhibition enhances mitophagy. The mitophagic effect of USP14 inhibition proved to be PINK1/Parkin- independent, instead relying on expression of the mitochondrial E3 Ubiquitin Ligase MITOL/MARCH5. Notably, USP14 inhibition normalized the mitochondrial defects of Parkin KO human neurons.
Collapse
Affiliation(s)
- Greta Bernardo
- Department of Biology, University of Padova, Padova, Italy
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, USA; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | | | - Sofia Mauri
- Department of Biology, University of Padova, Padova, Italy
| | - Alice Borsetto
- Department of Biology, University of Padova, Padova, Italy
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Daniel J Finley
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Ebstein F, Latypova X, Hung KYS, Prado MA, Lee BH, Möller S, Zieba BA, Florenceau L, Vignard V, Poirier L, Moroni I, Dubucs C, Chassaing N, Horvath J, Prokisch H, Küry S, Bézieau S, Paulo JA, Finley D, Krüger E, Ghezzi D, Isidor B. Biallelic USP14 variants cause a syndromic neurodevelopmental disorder. Genet Med 2024; 26:101120. [PMID: 38469793 PMCID: PMC11241549 DOI: 10.1016/j.gim.2024.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
PURPOSE Imbalances in protein homeostasis affect human brain development, with the ubiquitin-proteasome system (UPS) and autophagy playing crucial roles in neurodevelopmental disorders (NDD). This study explores the impact of biallelic USP14 variants on neurodevelopment, focusing on its role as a key hub connecting UPS and autophagy. METHODS Here, we identified biallelic USP14 variants in 4 individuals from 3 unrelated families: 1 fetus, a newborn with a syndromic NDD and 2 siblings affected by a progressive neurological disease. Specifically, the 2 siblings from the latter family carried 2 compound heterozygous variants c.8T>C p.(Leu3Pro) and c.988C>T p.(Arg330∗), whereas the fetus had a homozygous frameshift c.899_902del p.(Lys300Serfs∗24) variant, and the newborn patient harbored a homozygous frameshift c.233_236del p.(Leu78Glnfs∗11) variant. Functional studies were conducted using sodium dodecyl-sulfate polyacrylamide gel electrophoresis, western blotting, and mass spectrometry analyses in both patient-derived and CRISPR-Cas9-generated cells. RESULTS Our investigations indicated that the USP14 variants correlated with reduced N-terminal methionine excision, along with profound alterations in proteasome, autophagy, and mitophagy activities. CONCLUSION Biallelic USP14 variants in NDD patients perturbed protein degradation pathways, potentially contributing to disorder etiology. Altered UPS, autophagy, and mitophagy activities underscore the intricate interplay, elucidating their significance in maintaining proper protein homeostasis during brain development.
Collapse
Affiliation(s)
- Frédéric Ebstein
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
| | - Xenia Latypova
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | | | - Miguel A. Prado
- Dept of Cell Biology, Harvard Medical School, Boston, MA, US
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Byung-Hoon Lee
- Dept of Cell Biology, Harvard Medical School, Boston, MA, US
- Dept of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Sophie Möller
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
| | - Barbara A. Zieba
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
| | - Laëtitia Florenceau
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
| | - Virginie Vignard
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Léa Poirier
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
| | - Isabella Moroni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Charlotte Dubucs
- Département anatomie et cytologie pathologiques, CHU Toulouse, Toulouse, France
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
| | - Judit Horvath
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Sébastien Küry
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Stéphane Bézieau
- Present address: Nantes Université, CNRS, INSERM, L’Institut du Thorax, 44000 Nantes, France
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| | - Joao A. Paulo
- Dept of Cell Biology, Harvard Medical School, Boston, MA, US
| | - Daniel Finley
- Dept of Cell Biology, Harvard Medical School, Boston, MA, US
| | - Elke Krüger
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald, Germany
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France
| |
Collapse
|
3
|
Engelender S, Stefanis L, Oddo S, Bellucci A. Can We Treat Neurodegenerative Proteinopathies by Enhancing Protein Degradation? Mov Disord 2022; 37:1346-1359. [PMID: 35579450 DOI: 10.1002/mds.29058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative proteinopathies are defined as a class of neurodegenerative disorders, with either genetic or sporadic age-related onset, characterized by the pathological accumulation of aggregated protein deposits. These mainly include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) as well as frontotemporal lobar degeneration (FTLD). The deposition of abnormal protein aggregates in the brain of patients affected by these disorders is thought to play a causative role in neuronal loss and disease progression. On that account, the idea of improving the clearance of pathological protein aggregates has taken hold as a potential therapeutic strategy. Among the possible approaches to pursue for reducing disease protein accumulation, there is the stimulation of the main protein degradation machineries of eukaryotic cells: the ubiquitin proteasomal system (UPS) and autophagy lysosomal pathway (ALP). Of note, several clinical trials testing the efficacy of either UPS- or ALP-active compounds are currently ongoing. Here, we discuss the main gaps and controversies emerging from experimental studies and clinical trials assessing the therapeutic efficacy of modulators of either the UPS or ALP in neurodegenerative proteinopathies, to gather whether they may constitute a real gateway from these disorders. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Simone Engelender
- Department of Biochemistry, The B. Rappaport Faculty of Medicine and Institute of Medical Research, Technion-Israel Institute of Technology, Haifa, Israel
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|