1
|
Brandão-Teles C, Zuccoli GS, de Moraes Vrechi TA, Ramos-da-Silva L, Santos AVS, Crunfli F, Martins-de-Souza D. Induced-pluripotent stem cells and neuroproteomics as tools for studying neurodegeneration. Biochem Soc Trans 2024; 52:163-176. [PMID: 38288874 DOI: 10.1042/bst20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/29/2024]
Abstract
The investigation of neurodegenerative diseases advanced significantly with the advent of cell-reprogramming technology, leading to the creation of new models of human illness. These models, derived from induced pluripotent stem cells (iPSCs), facilitate the study of sporadic as well as hereditary diseases and provide a comprehensive understanding of the molecular mechanisms involved with neurodegeneration. Through proteomics, a quantitative tool capable of identifying thousands of proteins from small sample volumes, researchers have attempted to identify disease mechanisms by detecting differentially expressed proteins and proteoforms in disease models, biofluids, and postmortem brain tissue. The integration of these two technologies allows for the identification of novel pathological targets within the realm of neurodegenerative diseases. Here, we highlight studies from the past 5 years on the contributions of iPSCs within neuroproteomic investigations, which uncover the molecular mechanisms behind these illnesses.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Lívia Ramos-da-Silva
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Aline Valéria Sousa Santos
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-862, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D)
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| |
Collapse
|
2
|
Benwood C, Walters-Shumka J, Scheck K, Willerth SM. 3D bioprinting patient-derived induced pluripotent stem cell models of Alzheimer's disease using a smart bioink. Bioelectron Med 2023; 9:10. [PMID: 37221543 DOI: 10.1186/s42234-023-00112-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD), a progressive neurodegenerative disorder, is becoming increasingly prevalent as our population ages. It is characterized by the buildup of amyloid beta plaques and neurofibrillary tangles containing hyperphosphorylated-tau. The current treatments for AD do not prevent the long-term progression of the disease and pre-clinical models often do not accurately represent its complexity. Bioprinting combines cells and biomaterials to create 3D structures that replicate the native tissue environment and can be used as a tool in disease modeling or drug screening. METHODS This work differentiated both healthy and diseased patient-derived human induced pluripotent stems cells (hiPSCs) into neural progenitor cells (NPCs) that were bioprinted using the Aspect RX1 microfluidic printer into dome-shaped constructs. The combination of cells, bioink, and puromorphamine (puro)-releasing microspheres were used to mimic the in vivo environment and direct the differentiation of the NPCs into basal forebrain-resembling cholinergic neurons (BFCN). These tissue models were then characterized for cell viability, immunocytochemistry, and electrophysiology to evaluate their functionality and physiology for use as disease-specific neural models. RESULTS Tissue models were successfully bioprinted and the cells were viable for analysis after 30- and 45-day cultures. The neuronal and cholinergic markers β-tubulin III (Tuj1), forkhead box G1 (FOXG1), and choline acetyltransferase (ChAT) were identified as well as the AD markers amyloid beta and tau. Further, immature electrical activity was observed when the cells were excited with potassium chloride and acetylcholine. CONCLUSIONS This work shows the successful development of bioprinted tissue models incorporating patient derived hiPSCs. Such models can potentially be used as a tool to screen promising drug candidates for treating AD. Further, this model could be used to increase the understanding of AD progression. The use of patient derived cells also shows the potential of this model for use in personalized medicine applications.
Collapse
Affiliation(s)
- Claire Benwood
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | | | - Kali Scheck
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C2, Canada.
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
3
|
Nakatsu D, Kunishige R, Taguchi Y, Shinozaki-Narikawa N, Osaka K, Yokomizo K, Ishida M, Takei S, Yamasaki S, Hagiya K, Hattori K, Tsukamoto T, Murata M, Kano F. BMP4-SMAD1/5/9-RUNX2 pathway activation inhibits neurogenesis and oligodendrogenesis in Alzheimer's patients' iPSCs in senescence-related conditions. Stem Cell Reports 2023; 18:688-705. [PMID: 36764297 PMCID: PMC10031282 DOI: 10.1016/j.stemcr.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
In addition to increasing β-amyloid plaque deposition and tau tangle formation, inhibition of neurogenesis has recently been observed in Alzheimer's disease (AD). This study generated a cellular model that recapitulated neurogenesis defects observed in patients with AD, using induced pluripotent stem cell lines derived from sporadic and familial AD (AD iPSCs). AD iPSCs exhibited impaired neuron and oligodendrocyte generation when expression of several senescence markers was induced. Compound screening using these cellular models identified three drugs able to restore neurogenesis, and extensive morphological quantification revealed cell-line- and drug-type-dependent neuronal generation. We also found involvement of elevated Sma- and Mad-related protein 1/5/9 (SMAD1/5/9) phosphorylation and greater Runt-related transcription factor 2 (RUNX2) expression in neurogenesis defects in AD. Moreover, BMP4 was elevated in AD iPSC medium during neural differentiation and cerebrospinal fluid of patients with AD, suggesting a BMP4-SMAD1/5/9-RUNX2 signaling pathway contribution to neurogenesis defects in AD under senescence-related conditions.
Collapse
Affiliation(s)
- Daiki Nakatsu
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Rina Kunishige
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Naeko Shinozaki-Narikawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kishiko Osaka
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kayo Yokomizo
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Mami Ishida
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shunsuke Takei
- System Development Department, Technology Solutions Sector, Healthcare Business Unit, Nikon Corporation, 471, Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa 244-8533, Japan
| | - Shoko Yamasaki
- Mathematical Sciences Research Laboratory, Research & Development Division, Nikon Corporation, 471, Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa 244-8533, Japan
| | - Keita Hagiya
- Fujifilm Corporation, 7-3 Akasaka 9, Minato-ku, Tokyo 107-0052, Japan
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Tadashi Tsukamoto
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
4
|
van der Pan K, Kassem S, Khatri I, de Ru AH, Janssen GMC, Tjokrodirijo RTN, al Makindji F, Stavrakaki E, de Jager AL, Naber BAE, de Laat IF, Louis A, van den Bossche WBL, Vogelezang LB, Balvers RK, Lamfers MLM, van Veelen PA, Orfao A, van Dongen JJM, Teodosio C, Díez P. Quantitative proteomics of small numbers of closely-related cells: Selection of the optimal method for a clinical setting. Front Med (Lausanne) 2022; 9:997305. [PMID: 36237552 PMCID: PMC9553008 DOI: 10.3389/fmed.2022.997305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Mass spectrometry (MS)-based proteomics profiling has undoubtedly increased the knowledge about cellular processes and functions. However, its applicability for paucicellular sample analyses is currently limited. Although new approaches have been developed for single-cell studies, most of them have not (yet) been standardized and/or require highly specific (often home-built) devices, thereby limiting their broad implementation, particularly in non-specialized settings. To select an optimal MS-oriented proteomics approach applicable in translational research and clinical settings, we assessed 10 different sample preparation procedures in paucicellular samples of closely-related cell types. Particularly, five cell lysis protocols using different chemistries and mechanical forces were combined with two sample clean-up techniques (C18 filter- and SP3-based), followed by tandem mass tag (TMT)-based protein quantification. The evaluation was structured in three phases: first, cell lines from hematopoietic (THP-1) and non-hematopoietic (HT-29) origins were used to test the approaches showing the combination of a urea-based lysis buffer with the SP3 bead-based clean-up system as the best performer. Parameters such as reproducibility, accessibility, spatial distribution, ease of use, processing time and cost were considered. In the second phase, the performance of the method was tested on maturation-related cell populations: three different monocyte subsets from peripheral blood and, for the first time, macrophages/microglia (MAC) from glioblastoma samples, together with T cells from both tissues. The analysis of 50,000 cells down to only 2,500 cells revealed different protein expression profiles associated with the distinct cell populations. Accordingly, a closer relationship was observed between non-classical monocytes and MAC, with the latter showing the co-expression of M1 and M2 macrophage markers, although pro-tumoral and anti-inflammatory proteins were more represented. In the third phase, the results were validated by high-end spectral flow cytometry on paired monocyte/MAC samples to further determine the sensitivity of the MS approach selected. Finally, the feasibility of the method was proven in 194 additional samples corresponding to 38 different cell types, including cells from different tissue origins, cellular lineages, maturation stages and stimuli. In summary, we selected a reproducible, easy-to-implement sample preparation method for MS-based proteomic characterization of paucicellular samples, also applicable in the setting of functionally closely-related cell populations.
Collapse
Affiliation(s)
- Kyra van der Pan
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Sara Kassem
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Leiden Computational Biology Center, LUMC, Leiden, Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, LUMC, Leiden, Netherlands
| | | | | | - Fadi al Makindji
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Anniek L. de Jager
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Brigitta A. E. Naber
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Inge F. de Laat
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Alesha Louis
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | | | | | | | | | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca-CSIC), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jacques J. M. van Dongen
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca-CSIC), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Jacques J. M. van Dongen
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca-CSIC), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Paula Díez
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca-CSIC), Salamanca, Spain
- Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
5
|
Lawrence AJ, Prado MA. Editorial: Exciting developments in neurochemistry research and publishing. J Neurochem 2022; 162:151-155. [PMID: 35524403 DOI: 10.1111/jnc.15595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
In this editorial, we are happy to connect with our community to explain the changes introduced to the Journal of Neurochemistry over the last year and provide some insights into new developments and exciting opportunities. We anticipate these developments, which are strongly guided to increase transparency and support early career researchers, will increase the value of the Journal of Neurochemistry for the authors and readers. Ultimately, we hope to improve the author experience with the Journal of Neurochemistry and continue to be the leading venue for fast dissemination of exciting new research focusing on how molecules, cells and circuits regulate the nervous system in health and disease.
Collapse
Affiliation(s)
- Andrew J Lawrence
- The Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Marco A Prado
- University of Western Ontario, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
6
|
Roh HW, Kim NR, Lee DG, Cheong JY, Seo SW, Choi SH, Kim EJ, Cho SH, Kim BC, Kim SY, Kim EY, Chang J, Lee SY, Yoon D, Choi JW, An YS, Kang HY, Shin H, Park B, Son SJ, Hong CH. Baseline Clinical and Biomarker Characteristics of Biobank Innovations for Chronic Cerebrovascular Disease With Alzheimer's Disease Study: BICWALZS. Psychiatry Investig 2022; 19:100-109. [PMID: 35042283 PMCID: PMC8898610 DOI: 10.30773/pi.2021.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE We aimed to present the study design and baseline cross-sectional participant characteristics of biobank innovations for chronic cerebrovascular disease with Alzheimer's disease study (BICWALZS) participants. METHODS A total of 1,013 participants were enrolled in BICWALZS from October 2016 to December 2020. All participants underwent clinical assessments, basic blood tests, and standardized neuropsychological tests (n=1,013). We performed brain magnetic resonance imaging (MRI, n=817), brain amyloid positron emission tomography (PET, n=713), single nucleotide polymorphism microarray chip (K-Chip, n=949), locomotor activity assessment (actigraphy, n=200), and patient-derived dermal fibroblast sampling (n=175) on a subset of participants. RESULTS The mean age was 72.8 years, and 658 (65.0%) were females. Based on clinical assessments, total of 168, 534, 211, 80, and 20 had subjective cognitive decline, mild cognitive impairment (MCI), Alzheimer's dementia, vascular dementia, and other types of dementia or not otherwise specified, respectively. Based on neuroimaging biomarkers and cognition, 199, 159, 78, and 204 were cognitively normal (CN), Alzheimer's disease (AD)-related cognitive impairment, vascular cognitive impairment, and not otherwise specified due to mixed pathology (NOS). Each group exhibited many differences in various clinical, neuropsychological, and neuroimaging results at baseline. Baseline characteristics of BICWALZS participants in the MCI, AD, and vascular dementia groups were generally acceptable and consistent with 26 worldwide dementia cohorts and another independent AD cohort in Korea. CONCLUSION The BICWALZS is a prospective and longitudinal study assessing various clinical and biomarker characteristics in older adults with cognitive complaints. Details of the recruitment process, methodology, and baseline assessment results are described in this paper.
Collapse
Affiliation(s)
- Hyun Woong Roh
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Na-Rae Kim
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dong-Gi Lee
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae-Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea.,Human Genome Research and Bio-Resource Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Soo Hyun Cho
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong Yoon Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jaerak Chang
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Dukyong Yoon
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Jin Wook Choi
- Department of Radiology, Ajou University School of Medicine, Seoul, Republic of Korea
| | - Young-Sil An
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyunjung Shin
- Department of Industrial Engineering, Ajou University, Suwon, Republic of Korea.,Department of Artificial Intelligence, Ajou University, Suwon, Republic of Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea.,Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
7
|
Hanrieder J. Preface: Mass spectrometry in Alzheimer disease: This is the Preface for the special issue "Mass Spectrometry in Alzheimer Disease". J Neurochem 2021; 159:207-210. [PMID: 34665876 DOI: 10.1111/jnc.15512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
This preface introduces the content of the special issue on 'Mass Spectrometry in Alzheimer Disease'. Here, an overview is provided on how mass spectrometry is contributing to a broader understanding of AD pathobiology. Mass spectrometry has become a major technology in biomedical analysis and research. This includes biochemical and clinical studies that aim to detail our understanding of Alzheimer disease pathogenesis and pathobiology (AD). In this special issue, key experts in the field present exciting developments and applications of MS in the context of studying AD pathology. These studies span from basic biochemical and neuropathological studies, over advanced metabolomics- and proteomics, towards comprehensive biomarker studies, as well as more recently, in situ mass spectrometry-based imaging (MSI). Together, these studies highlight the key relevance of current and emerging MS technologies to detect, delineate and understand principle pathogenic mechanisms underlying AD.
Collapse
Affiliation(s)
- Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|