1
|
Paterno G, Bell BM, Riley-DiPaolo A, LaVoie MJ, Giasson BI. Polymerization of recombinant tau core fragments in vitro and seeding studies in cultured cells. Front Neurosci 2023; 17:1268360. [PMID: 38161790 PMCID: PMC10757379 DOI: 10.3389/fnins.2023.1268360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
The relative polymerization of specific tau protein cores that define Alzheimer's disease, Pick's disease and corticobasal degeneration were investigated using amyloid fluorometry and electron microscopy. In addition, the relative prion-like activities of polymers comprised of these respective tau protein segments were investigated in a cell-based assay. It is demonstrated that the seeding activities of specific tau core fibrils are affected by the presence of pathogenic tau missense mutations and the microtubule binding domain composition of tau. The unique impact of tau phosphorylation on seeding propensity was also investigated by altering stretches of phospho-mimetic and phospho-null residues in the presence of Alzheimer's disease tau core fibrils. These results have important mechanistic implications for mutation and isoform-specific driven pathogenesis.
Collapse
Affiliation(s)
- Giavanna Paterno
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brach M. Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Alexis Riley-DiPaolo
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew J. LaVoie
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Xia Y, Bell BM, Kim JD, Giasson BI. Tau mutation S356T in the three repeat isoform leads to microtubule dysfunction and promotes prion-like seeded aggregation. Front Neurosci 2023; 17:1181804. [PMID: 37304025 PMCID: PMC10248064 DOI: 10.3389/fnins.2023.1181804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Tauopathies are a group of neurodegenerative diseases, which include frontotemporal dementia (FTD) and Alzheimer's disease (AD), broadly defined by the development of tau brain aggregates. Both missense and splicing tau mutations can directly cause early onset FTD. Tau protein is a microtubule-associated protein that stabilizes and regulates microtubules, but this function can be disrupted in disease states. One contributing factor is the balance of different tau isoforms, which can be categorized into either three repeat (3R) or four repeat (4R) isoforms based on the number of microtubule-binding repeats that are expressed. Imbalance of 3R and 4R isoforms in either direction can cause FTD and neurodegeneration. There is also increasing evidence that 3R tauopathies such as Pick's disease form tau aggregates predominantly comprised of 3R isoforms and these can present differently from 4R and mixed 3R/4R tauopathies. In this study, multiple mutations in 3R tau were assessed for MT binding properties and prion-like aggregation propensity. Different missense tau mutations showed varying effects on MT binding depending on molecular location and properties. Of the mutations that were surveyed, S356T tau is uniquely capable of prion-like seeded aggregation and forms extensive Thioflavin positive aggregates. This unique prion-like tau strain will be useful to model 3R tau aggregation and will contribute to the understanding of diverse presentations of different tauopathies.
Collapse
Affiliation(s)
- Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brach M. Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Justin D. Kim
- Department of Internal Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Xia Y, Bell BM, Giasson BI. Tau Lysine Pseudomethylation Regulates Microtubule Binding and Enhances Prion-like Tau Aggregation. Int J Mol Sci 2023; 24:ijms24098286. [PMID: 37175990 PMCID: PMC10179186 DOI: 10.3390/ijms24098286] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be classified as tauopathies, which are a group of neurodegenerative diseases that develop toxic tau aggregates in specific brain regions. These pathological tau inclusions are altered by various post-translational modifications (PTMs) that include phosphorylation, acetylation, and methylation. Tau methylation has emerged as a target of interest for its potential involvement in tau pathomechanisms. Filamentous tau aggregates isolated from patients with AD are methylated at multiple lysine residues, although the exact methyltransferases have not been identified. One strategy to study the site-specific effects of methylation is to create methylation mimetics using a KFC model, which replaces lysine (K) with a hydrophobic group such as phenylalanine (F) to approximate the effects of lysine methylation (C or methyl group). In this study, tau methylmimetics were used to model several functional aspects of tau methylation such as effects on microtubule binding and tau aggregation in cell models. Overall, several tau methylmimetics displayed impaired microtubule binding, and tau methylmimetics enhanced prion-like seeded aggregation in the context of the FTD tau mutation P301L. Like other PTMs, tau methylation is a contributing factor to tau pathogenesis and could be a potential therapeutic drug target for the treatment of different tauopathies.
Collapse
Affiliation(s)
- Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brach M Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Zhu Y, Gandy L, Zhang F, Liu J, Wang C, Blair LJ, Linhardt RJ, Wang L. Heparan Sulfate Proteoglycans in Tauopathy. Biomolecules 2022; 12:1792. [PMID: 36551220 PMCID: PMC9776397 DOI: 10.3390/biom12121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, and are characterized by intraneuronal tau inclusion in the brain and the patient's cognitive decline with obscure pathogenesis. Heparan sulfate proteoglycans, a major type of extracellular matrix, have been believed to involve in tauopathies. The heparan sulfate proteoglycans co-deposit with tau in Alzheimer's patient brain, directly bind to tau and modulate tau secretion, internalization, and aggregation. This review summarizes the current understanding of the functions and the modulated molecular pathways of heparan sulfate proteoglycans in tauopathies, as well as the implication of dysregulated heparan sulfate proteoglycan expression in tau pathology and the potential of targeting heparan sulfate proteoglycan-tau interaction as a novel therapeutic option.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lauren Gandy
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Zhang Y, Wu KM, Yang L, Dong Q, Yu JT. Tauopathies: new perspectives and challenges. Mol Neurodegener 2022; 17:28. [PMID: 35392986 PMCID: PMC8991707 DOI: 10.1186/s13024-022-00533-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tauopathies are a class of neurodegenerative disorders characterized by neuronal and/or glial tau-positive inclusions. MAIN BODY Clinically, tauopathies can present with a range of phenotypes that include cognitive/behavioral-disorders, movement disorders, language disorders and non-specific amnestic symptoms in advanced age. Pathologically, tauopathies can be classified based on the predominant tau isoforms that are present in the inclusion bodies (i.e., 3R, 4R or equal 3R:4R ratio). Imaging, cerebrospinal fluid (CSF) and blood-based tau biomarkers have the potential to be used as a routine diagnostic strategy and in the evaluation of patients with tauopathies. As tauopathies are strongly linked neuropathologically and genetically to tau protein abnormalities, there is a growing interest in pursuing of tau-directed therapeutics for the disorders. Here we synthesize emerging lessons on tauopathies from clinical, pathological, genetic, and experimental studies toward a unified concept of these disorders that may accelerate the therapeutics. CONCLUSIONS Since tauopathies are still untreatable diseases, efforts have been made to depict clinical and pathological characteristics, identify biomarkers, elucidate underlying pathogenesis to achieve early diagnosis and develop disease-modifying therapies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| |
Collapse
|
6
|
Villa C, Rossi G, Bizzozero I, Prioni S, Boiocchi C, Agosta F, Canu E, Filippi M, Giaccone G, Caroppo P. MAPT Q336H mutation: intra-familial phenotypic heterogeneity in a new Italian family. Eur J Neurol 2022; 29:1529-1533. [PMID: 35020237 DOI: 10.1111/ene.15250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Q336H is a rare MAPT mutation, previously found in a single patient with behavioral variant of FTD and tau pathology (Pick bodies). Here, we describe the clinical characteristics of two members of a new family, carrying the Q336H MAPT mutation. METHODS Clinical, genetic and neuroradiological assessment and follow-up of the proband. RESULTS At age 37, the proband developed naming and objects recognition impairment, due to a lack of knowledge. After 3 years, he developed behavioral disorders. MRI and FDG-PET showed the involvement of the left temporal pole. A diagnosis of semantic variant of primary progressive aphasia (svPPA) was made. At follow-up after 6 and 12 months, a rapid worsening of cognitive deficits occurred. His parent presented, at age 65, slowly progressive memory deficits without behavioral impairment, and, on MRI, evidence of mesial temporal atrophy, consistent with a clinical diagnosis of Alzheimer's disease (AD). DISCUSSION and conclusion This is the second family carrying the MAPT Q336H mutation reported so far. We showed that svPPA and AD-like phenotype can be associated with this mutation. A wide clinical variability exists at intra-familial level for Q336H MAPT mutation, pointing to genetic and/or environmental influencing factors on disease expression. We also confirmed that svPPA can be associated with MAPT mutations, suggesting that this gene should be analyzed also in patients with svPPA, especially with early onset. In addition, an AD-like phenotype may be associated with this mutation, suggesting its different effects on protein misfolding and aggregation.
Collapse
Affiliation(s)
- Cristina Villa
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giacomina Rossi
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ilaria Bizzozero
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Prioni
- Clinic Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Boiocchi
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Unit of Neurorehabilitation, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgio Giaccone
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Caroppo
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
7
|
Tau K321/K353 pseudoacetylation within KXGS motifs regulates tau-microtubule interactions and inhibits aggregation. Sci Rep 2021; 11:17069. [PMID: 34426645 PMCID: PMC8382713 DOI: 10.1038/s41598-021-96627-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease is the leading cause of dementia and a defining hallmark is the progressive brain deposition of tau aggregates. The insidious accumulation of brain tau inclusions is also involved in a group of neurodegenerative diseases termed frontotemporal dementias. In all of these disorders, tau aggregates are enriched in post-translational modifications including acetylation, which has recently been identified at multiple sites. While most evidence suggest that tau acetylation is detrimental and promotes tau aggregation, a few studies support that tau acetylation within the KXGS motif can be protective and inhibit tau aggregation. To model site-specific acetylation at K259, K290, K321, and K353, acetylmimetics were created by mutating lysine to glutamine residues, which approximates size and charge of acetylation. HEK293T cells were transfected to express wild type tau, tau pathogenic mutations (P301L and P301L/S320F) or tau acetylmimetics and assessed by cell-based assays for microtubule binding and tau aggregation. Acetylmimetics within the KXGS motif (K259Q, K290Q, K321Q, K353Q) leads to significant decreased tau-microtubule interactions. Acetylmimetics K321Q and K353Q within the context of the pathogenic P301L tau mutation strongly inhibited prion-like seeded aggregation. This protective effect was confirmed to decrease intrinsic aggregation of P301L/S320F tau double mutation. Surprisingly, K321Q and K353Q acetylmimetics altered the conformational structure of P301L/S320F tau to extensively impair Thioflavin S binding. Site-specific acetylation of tau at K321 and K353 could represent a natural protective mechanism against tau aggregation and could be a potential therapeutic target.
Collapse
|