1
|
Janz P, Bainier M, Marashli S, Gross S, Redondo RL. Clinically-probed mechanisms of action in Fragile-X syndrome fail to normalize translational EEG phenotypes in Fmr1 knockout mice. Neuropharmacology 2025; 262:110182. [PMID: 39396738 DOI: 10.1016/j.neuropharm.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using "task-free" and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Simon Gross
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
2
|
Zhang L, Duan Y, Ma R, Han J, Pan N, Gao L, Wang Y. Clinical phenotype and functional influence of GRIN2A variants in epilepsy-aphasia syndrome. Epilepsia Open 2024; 9:2306-2318. [PMID: 39474911 PMCID: PMC11633710 DOI: 10.1002/epi4.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE N-methyl-D-aspartate receptors are glutamate-gated ion channels that play a crucial role in brain function. Numerous inherited or de novo variants in the GRIN2A gene, encoding the GluN2A subunit of the receptor, have been identified in patients with epilepsy. In addition, it is worth noting that GRIN2A variants exhibit a strong correlation with epilepsy-aphasia syndromes, a group of age-dependent epileptic, cognitive, and language disorders with a characteristic electroencephalographic pattern. METHODS Whole exome sequencing was conducted in enrolled patients with epilepsy-aphasia syndromes, and GRIN2A variants were screened. The conservation of substituted residues, conformational changes of mutant subunits, and in silico predictions of pathogenicity were thoroughly assessed in our study. Functional alterations of the variants were examined using whole-cell voltage-clamp current recordings while the relative surface expression levels of subunit proteins were assessed via immunofluorescence assays. A summary of previously published GRIN2A missense variants was conducted to investigate the genotypic-phenotypic-functional correlations. RESULTS Two missense GRIN2A variants (c. 2482A >G/p. M828V, c. 2627 T >C/p. I876T) were identified, which are located in the transmembrane helix M4 and C-terminus domain of the GluN2A subunit, respectively. Both variants exhibited reduced current density of NMDARs and surface/total expression levels of GluN2A subunits, while M828V showed a decreased extent of desensitization as well. A further summary of the previously reported GRIN2A variants demonstrated that more variable phenotypes were observed for variants situated in the C-terminus domain or those with loss-of-function effects. SIGNIFICANCE Our study expands the phenotypic and functional range of GRIN2A-related disorders. In order to optimally establish the domain-function-phenotype correlations in GRIN2A variants, it is imperative to gather a more extensive set of clinical and functional data. PLAIN LANGUAGE SUMMARY This study has identified two genetic variants of the GRIN2A gene in patients with epilepsy-aphasia syndrome. We assess the variants' harmfulness through a variety of functional experiments, including evaluating the expression level of the mutated protein and the resulting changes in electrophysiological activities. Also, we reviewed previously published papers about GRIN2A variants in epilepsy to learn more about the correlations between their locations, functional changes, and clinical manifestations.
Collapse
Affiliation(s)
- Lu Zhang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yiran Duan
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Present address:
Department of NeurologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Rui Ma
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Present address:
Department of Endocrinology, Genetics and MetabolismNational Center for Children's Health, Beijing Children's Hospital, Capital Medical UniversityBeijingChina
| | - Jiaqi Han
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Na Pan
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Lehong Gao
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yuping Wang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Center of Epilepsy, Beijing Institute for Brain DisordersCapital Medical University, Ministry of Science and TechnologyBeijingChina
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Bomatter P, Paillard J, Garces P, Hipp J, Engemann DA. Machine learning of brain-specific biomarkers from EEG. EBioMedicine 2024; 106:105259. [PMID: 39106531 DOI: 10.1016/j.ebiom.2024.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Electroencephalography (EEG) has a long history as a clinical tool to study brain function, and its potential to derive biomarkers for various applications is far from exhausted. Machine learning (ML) can guide future innovation by harnessing the wealth of complex EEG signals to isolate relevant brain activity. Yet, ML studies in EEG tend to ignore physiological artefacts, which may cause problems for deriving biomarkers specific to the central nervous system (CNS). METHODS We present a framework for conceptualising machine learning from CNS versus peripheral signals measured with EEG. A signal representation based on Morlet wavelets allowed us to define traditional brain activity features (e.g. log power) and alternative inputs used by state-of-the-art ML approaches based on covariance matrices. Using more than 2600 EEG recordings from large public databases (TUAB, TDBRAIN), we studied the impact of peripheral signals and artefact removal techniques on ML models in age and sex prediction analyses. FINDINGS Across benchmarks, basic artefact rejection improved model performance, whereas further removal of peripheral signals using ICA decreased performance. Our analyses revealed that peripheral signals enable age and sex prediction. However, they explained only a fraction of the performance provided by brain signals. INTERPRETATION We show that brain signals and body signals, both present in the EEG, allow for prediction of personal characteristics. While these results may depend on specific applications, our work suggests that great care is needed to separate these signals when the goal is to develop CNS-specific biomarkers using ML. FUNDING All authors have been working for F. Hoffmann-La Roche Ltd.
Collapse
Affiliation(s)
- Philipp Bomatter
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Joseph Paillard
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jörg Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Denis-Alexander Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
4
|
Marashli S, Janz P, Redondo RL. Auditory brainstem responses are resistant to pharmacological modulation in Sprague Dawley wild-type and Neurexin1α knockout rats. BMC Neurosci 2024; 25:18. [PMID: 38491350 PMCID: PMC10941391 DOI: 10.1186/s12868-024-00861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Sensory processing in the auditory brainstem can be studied with auditory brainstem responses (ABRs) across species. There is, however, a limited understanding of ABRs as tools to assess the effect of pharmacological interventions. Therefore, we set out to understand how pharmacological agents that target key transmitter systems of the auditory brainstem circuitry affect ABRs in rats. Given previous studies, demonstrating that Nrxn1α KO Sprague Dawley rats show substantial auditory processing deficits and altered sensitivity to GABAergic modulators, we used both Nrxn1α KO and wild-type littermates in our study. First, we probed how different commonly used anesthetics (isoflurane, ketamine/xylazine, medetomidine) affect ABRs. In the next step, we assessed the effects of different pharmacological compounds (diazepam, gaboxadol, retigabine, nicotine, baclofen, and bitopertin) either under isoflurane or medetomidine anesthesia. We found that under our experimental conditions, ABRs are largely unaffected by diverse pharmacological modulation. Significant modulation was observed with (i) nicotine, affecting the late ABRs components at 90 dB stimulus intensity under isoflurane anesthesia in both genotypes and (ii) retigabine, showing a slight decrease in late ABRs deflections at 80 dB stimulus intensity, mainly in isoflurane anesthetized Nrxn1α KO rats. Our study suggests that ABRs in anesthetized rats are resistant to a wide range of pharmacological modulators, which has important implications for the applicability of ABRs to study auditory brainstem physiology.
Collapse
Affiliation(s)
- Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
5
|
Al-youzbaki MU, Schormans AL, Allman BL. Past and present experience shifts audiovisual temporal perception in rats. Front Behav Neurosci 2023; 17:1287587. [PMID: 37908200 PMCID: PMC10613659 DOI: 10.3389/fnbeh.2023.1287587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Our brains have a propensity to integrate closely-timed auditory and visual stimuli into a unified percept; a phenomenon that is highly malleable based on prior sensory experiences, and is known to be altered in clinical populations. While the neural correlates of audiovisual temporal perception have been investigated using neuroimaging and electroencephalography techniques in humans, animal research will be required to uncover the underlying cellular and molecular mechanisms. Prior to conducting such mechanistic studies, it is important to first confirm the translational potential of any prospective animal model. Thus, in the present study, we conducted a series of experiments to determine if rats show the hallmarks of audiovisual temporal perception observed in neurotypical humans, and whether the rat behavioral paradigms could reveal when they experienced perceptual disruptions akin to those observed in neurodevelopmental disorders. After training rats to perform a temporal order judgment (TOJ) or synchrony judgment (SJ) task, we found that the rats' perception was malleable based on their past and present sensory experiences. More specifically, passive exposure to asynchronous audiovisual stimulation in the minutes prior to behavioral testing caused the rats' perception to predictably shift in the direction of the leading stimulus; findings which represent the first time that this form of audiovisual perceptual malleability has been reported in non-human subjects. Furthermore, rats performing the TOJ task also showed evidence of rapid recalibration, in which their audiovisual temporal perception on the current trial was predictably influenced by the timing lag between the auditory and visual stimuli in the preceding trial. Finally, by manipulating either experimental testing parameters or altering the rats' neurochemistry with a systemic injection of MK-801, we showed that the TOJ and SJ tasks could identify when the rats had difficulty judging the timing of audiovisual stimuli. These findings confirm that the behavioral paradigms are indeed suitable for future testing of rats with perceptual disruptions in audiovisual processing. Overall, our collective results highlight that rats represent an excellent animal model to study the cellular and molecular mechanisms underlying the acuity and malleability of audiovisual temporal perception, as they showcase the perceptual hallmarks commonly observed in humans.
Collapse
|
6
|
Janz P, Bainier M, Marashli S, Schoenenberger P, Valencia M, Redondo RL. Neurexin1α knockout rats display oscillatory abnormalities and sensory processing deficits back-translating key endophenotypes of psychiatric disorders. Transl Psychiatry 2022; 12:455. [PMID: 36307390 PMCID: PMC9616904 DOI: 10.1038/s41398-022-02224-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Neurexins are presynaptic transmembrane proteins crucial for synapse development and organization. Deletion and missense mutations in all three Neurexin genes have been identified in psychiatric disorders, with mutations in the NRXN1 gene most strongly linked to schizophrenia (SZ) and autism spectrum disorder (ASD). While the consequences of NRXN1 deletion have been extensively studied on the synaptic and behavioral levels, circuit endophenotypes that translate to the human condition have not been characterized yet. Therefore, we investigated the electrophysiology of cortico-striatal-thalamic circuits in Nrxn1α-/- rats and wildtype littermates focusing on a set of translational readouts, including spontaneous oscillatory activity, auditory-evoked oscillations and potentials, as well as mismatch negativity-like (MMN) responses and responses to social stimuli. On the behavioral level Nrxn1α-/- rats showed locomotor hyperactivity. In vivo freely moving electrophysiology revealed pronounced increases of spontaneous oscillatory power within the gamma band in all studied brain areas and elevation of gamma coherence in cortico-striatal and thalamocortical circuits of Nrxn1α-/- rats. In contrast, auditory-evoked oscillations driven by chirp-modulated tones showed reduced power in cortical areas confined to slower oscillations. Finally, Nrxn1α-/- rats exhibited altered auditory evoked-potentials and profound deficits in MMN-like responses, explained by reduced prediction error. Despite deficits for auditory stimuli, responses to social stimuli appeared intact. A central hypothesis for psychiatric and neurodevelopmental disorders is that a disbalance of excitation-to-inhibition is underlying oscillatory and sensory deficits. In a first attempt to explore the impact of inhibitory circuit modulation, we assessed the effects of enhancing tonic inhibition via δ-containing GABAA receptors (using Gaboxadol) on endophenotypes possibly associated with network hyperexcitability. Pharmacological experiments applying Gaboxadol showed genotype-specific differences, but failed to normalize oscillatory or sensory processing abnormalities. In conclusion, our study revealed endophenotypes in Nrxn1α-/- rats that could be used as translational biomarkers for drug development in psychiatric disorders.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Philipp Schoenenberger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Miguel Valencia
- Universidad de Navarra, CIMA, Program of Neuroscience, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, 31080, Pamplona, Spain
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|