1
|
Pan X, Lei Z, Chen J, Jia C, Deng J, Liu Y, Luo X, Wang L, Zi D, Wang Z, Li S, Tan J. Blocking α 1 Adrenergic Receptor as a Novel Target for Treating Alzheimer's Disease. ACS Chem Neurosci 2024. [PMID: 39325017 DOI: 10.1021/acschemneuro.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
While amyloidopathy and tauopathy have been recognized as hallmarks in Alzheimer's disease (AD) brain, recently, increasing lines of evidence have supported the pathological roles of cerebrovascular changes in the pathogenesis and progression of AD. Restoring or ameliorating the impaired cerebrovascular function during the early phase of the disease may yield benefits against the cognitive decline in AD. In the present study, we evaluated the potential therapeutic effects of nicergoline [NG, a well-known α1 adrenergic receptor (ADR) blocker and vasodilator] against AD through ameliorating vascular abnormalities. Our in vitro data revealed that NG could reverse β-amyloid1-42 (Aβ1-42)-induced PKC/ERK1/2 activation, the downstream pathway of α1-ADR activation, in α1-ADR-overexpressed N2a cells. NG also blocked Aβ1-42- or phenylephrine-induced constrictions in isolated rat arteries. All these in vitro data may suggest ADR-dependent impacts of Aβ on vascular function and the reversal effect of NG. In addition, the ameliorating impacts of NG treatment on cerebral vasoconstriction, vasoremodeling, and cognitive decline were investigated in vivo in a PSAPP transgenic AD mouse model. Consistent with in vitro findings, the chronic treatment of NG significantly ameliorated the cerebrovascular dysfunctions and Aβ plaque depositions in the brain. Moreover, an improved cognitive performance was also observed. Taken together, our findings supported the beneficial effects of NG on AD through adrenergic-related mechanisms and highlighted the therapeutic potential of α1-adrenergic vasomodulators against AD pathologies.
Collapse
Affiliation(s)
- Xidong Pan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
- Emergency Department, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Congcong Jia
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Institute of Brain Science and Brain-Inspired Research, Jinan 271016, China
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xingmei Luo
- Comprehensive Ward, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Likun Wang
- Emergency Department, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Dan Zi
- Department of Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550004, China
| | - Zhen Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
- Institute of Translational Medicine; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
2
|
Hart A, Aldridge G, Zhang Q, Narayanan NS, Simmering JE. Association of Terazosin, Doxazosin, or Alfuzosin Use and Risk of Dementia With Lewy Bodies in Men. Neurology 2024; 103:e209570. [PMID: 38896813 PMCID: PMC11226317 DOI: 10.1212/wnl.0000000000209570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/15/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Terazosin, doxazosin, and alfuzosin (Tz/Dz/Az) are α-1 adrenergic receptor antagonists that also bind to and activate a key adenosine triphosphate (ATP)-producing enzyme in glycolysis. It is hypothesized that the increase in energy availability in the brain may slow or prevent neurodegeneration, potentially by reducing the accumulation of alpha-synuclein. Recent work has suggested a potentially neuroprotective effect of the use of Tz/Dz/Az in Parkinson disease in both animal and human studies. We investigated the neuroprotective effects of Tz/Dz/Az in a closely related disease, dementia with Lewy bodies (DLB). METHODS We used a new-user active comparator design in the Merative Marketscan database to identify men with no history of DLB who were newly started on Tz/Dz/Az or 2 comparator medications. Our comparator medications were other drugs commonly used to treat benign prostatic hyperplasia that do not increase ATP: the α-1 adrenergic receptor antagonist tamsulosin or 5α-reductase inhibitor (5ARI). We matched the cohorts on propensity scores and duration of follow-up. We followed up the matched cohorts forward to estimate the hazard of developing DLB using Cox proportional hazards regression. RESULTS Men who were newly started on Tz/Dz/Az had a lower hazard of developing DLB than matched men taking tamsulosin (n = 242,716, 728,256 person-years, hazard ratio [HR] 0.60, 95% CI 0.50-0.71) or 5ARI (n = 130,872, 399,316 person-years, HR 0.73, 95% CI 0.57-0.93). while the hazard in men taking tamsulosin was similar to that of men taking 5ARI (n = 159,596, 482,280 person-years, HR 1.17, 95% CI 0.96-1.42). These results were robust to several sensitivity analyses. DISCUSSION We find an association in men who are taking Tz/Dz/Az and a lower hazard of DLB compared with similar men taking other medications. When combined with the literature of Tz/Dz/Az on Parkinson disease, our findings suggest that glycolysis-enhancing drugs may be broadly protective in neurodegenerative synucleinopathies. A future randomized trial is required to assess these associations for causality. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that Tz/Dz/Az use reduces the rate of developing DLB in adult men.
Collapse
Affiliation(s)
- Alexander Hart
- From the Department of Neurology (A.H.), University of Michigan, Ann Arbor; Departments of Neurology (G.A., Q.Z., N.S.N.) and Internal Medicine (J.E.S.), University of Iowa, Iowa City
| | - Georgina Aldridge
- From the Department of Neurology (A.H.), University of Michigan, Ann Arbor; Departments of Neurology (G.A., Q.Z., N.S.N.) and Internal Medicine (J.E.S.), University of Iowa, Iowa City
| | - Qiang Zhang
- From the Department of Neurology (A.H.), University of Michigan, Ann Arbor; Departments of Neurology (G.A., Q.Z., N.S.N.) and Internal Medicine (J.E.S.), University of Iowa, Iowa City
| | - Nandakumar S Narayanan
- From the Department of Neurology (A.H.), University of Michigan, Ann Arbor; Departments of Neurology (G.A., Q.Z., N.S.N.) and Internal Medicine (J.E.S.), University of Iowa, Iowa City
| | - Jacob E Simmering
- From the Department of Neurology (A.H.), University of Michigan, Ann Arbor; Departments of Neurology (G.A., Q.Z., N.S.N.) and Internal Medicine (J.E.S.), University of Iowa, Iowa City
| |
Collapse
|
3
|
Jati S, Munoz-Mayorga D, Shahabi S, Tang K, Tao Y, Dickson DW, Litvan I, Ghosh G, Mahata SK, Chen X. Chromogranin A (CgA) Deficiency Attenuates Tauopathy by Altering Epinephrine-Alpha-Adrenergic Receptor Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598548. [PMID: 38915622 PMCID: PMC11195202 DOI: 10.1101/2024.06.11.598548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Our previous studies have indicated that insulin resistance, hyperglycemia, and hypertension in aged wild-type (WT) mice can be reversed in mice lacking chromogranin-A (CgA-KO mice). These health conditions are associated with a higher risk of Alzheimer's disease (AD). CgA, a neuroendocrine secretory protein has been detected in protein aggregates in the brains of AD patients. Here, we determined the role of CgA in tauopathies, including AD (secondary tauopathy) and corticobasal degeneration (CBD, primary tauopathy). We found elevated levels of CgA in both AD and CBD brains, which were positively correlated with increased phosphorylated tau in the frontal cortex. Furthermore, CgA ablation in a human P301S tau (hTau) transgenic mice (CgA-KO/hTau) exhibited reduced tau aggregation, resistance to tau spreading, and an extended lifespan, coupled with improved cognitive function. Transcriptomic analysis of mice cortices highlighted altered levels of alpha-adrenergic receptors (Adra) in hTau mice compared to WT mice, akin to AD patients. Since CgA regulates the release of the Adra ligands epinephrine (EPI) and norepinephrine (NE), we determined their levels and found elevated EPI levels in the cortices of hTau mice, AD and CBD patients. CgA-KO/hTau mice exhibited reversal of EPI levels in the cortex and the expression of several affected genes, including Adra1 and 2, nearly returning them to WT levels. Treatment of hippocampal slice cultures with EPI or an Adra1 agonist intensified, while an Adra1 antagonist inhibited, tau hyperphosphorylation and aggregation. These findings reveal a critical role of CgA in regulation of tau pathogenesis via the EPI-Adra signaling axis.
Collapse
|
4
|
Schultz JL, Gander PE, Workman CD, Ponto LL, Cross S, Nance CS, Groth CL, Taylor EB, Ernst SE, Xu J, Uc EY, Magnotta VA, Welsh MJ, Narayanan NS. A pilot dose-finding study of Terazosin in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.22.24307622. [PMID: 38826433 PMCID: PMC11142298 DOI: 10.1101/2024.05.22.24307622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Parkinson's disease (PD) is a prevalent neurodegenerative disorder where progressive neuron loss is driven by impaired brain bioenergetics, particularly mitochondrial dysfunction and disrupted cellular respiration. Terazosin (TZ), an α-1 adrenergic receptor antagonist with a known efficacy in treating benign prostatic hypertrophy and hypertension, has shown potential in addressing energy metabolism deficits associated with PD due to its action on phosphoglycerate kinase 1 (PGK1). This study aimed to investigate the safety, tolerability, bioenergetic target engagement, and optimal dose of TZ in neurologically healthy subjects. Methods Eighteen healthy men and women (60 - 85 years old) were stratified into two cohorts based on maximum TZ dosages (5 mg and 10 mg daily). Methods included plasma and cerebrospinal fluid TZ concentration measurements, whole blood ATP levels, 31 Phosphorous magnetic resonance spectroscopy for brain ATP levels, 18 F-FDG PET imaging for cerebral metabolic activity, and plasma metabolomics. Results Our results indicated that a 5 mg/day dose of TZ significantly increased whole blood ATP levels and reduced global cerebral 18 F-FDG PET uptake without significant side effects or orthostatic hypotension. These effects were consistent across sexes. Higher doses did not result in additional benefits and showed a potential biphasic dose-response. Conclusions TZ at a dosage of 5 mg/day engages its metabolic targets effectively in both sexes without inducing significant adverse effects and provides a promising therapeutic avenue for mitigating energetic deficiencies. Further investigation via clinical trials to validate TZ's efficacy and safety in neurodegenerative (i.e., PD) contexts is warranted.
Collapse
|
5
|
Del Rosario Hernández T, Gore SV, Kreiling JA, Creton R. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles. Biomed Pharmacother 2024; 171:116096. [PMID: 38185043 PMCID: PMC10922774 DOI: 10.1016/j.biopha.2023.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
6
|
Hernández TDR, Gore SV, Kreiling JA, Creton R. Finding Drug Repurposing Candidates for Neurodegenerative Diseases using Zebrafish Behavioral Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557235. [PMID: 37745452 PMCID: PMC10515830 DOI: 10.1101/2023.09.12.557235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
7
|
Li C, Sun T, Zhang Y, Gao Y, Sun Z, Li W, Cheng H, Gu Y, Abumaria N. A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice. Neuron 2023; 111:2727-2741.e7. [PMID: 37352858 DOI: 10.1016/j.neuron.2023.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 01/13/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Persistence in the face of failure helps to overcome challenges. But the ability to adjust behavior or even give up when the task is uncontrollable has advantages. How the mammalian brain switches behavior when facing uncontrollability remains an open question. We generated two mouse models of behavioral transition from action to no-action during exposure to a prolonged experience with an uncontrollable outcome. The transition was not caused by pain desensitization or muscle fatigue and was not a depression-/learned-helplessness-like behavior. Noradrenergic neurons projecting to GABAergic neurons within the orbitofrontal cortex (OFC) are key regulators of this behavior. Fiber photometry, microdialysis, mini-two-photon microscopy, and tetrode/optrode in vivo recording in freely behaving mice revealed that the reduction of norepinephrine and downregulation of alpha 1 receptor in the OFC reduced the number and activity of GABAergic neurons necessary for driving action behavior resulting in behavioral transition. These findings define a circuit governing behavioral switch in response to prolonged uncontrollability.
Collapse
Affiliation(s)
- Chaoqun Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Tianping Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yimu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yan Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhou Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 211500, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|