1
|
Marottoli FM, Balu D, Chaudhary R, Lutz SE, Tai LM. Evaluation of BR1 and BI30 AAVs for Brain Endothelial Tropism. ASN Neuro 2024; 16:2427953. [PMID: 39621720 DOI: 10.1080/17590914.2024.2427953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 11/03/2024] [Indexed: 12/06/2024] Open
Abstract
Brain endothelial cells are critical for homeostasis of the central nervous system. Novel adeno-associated viruses (AAV) with brain endothelial cell tropism have been developed and are beginning to be employed in mechanistic and therapeutic research. Studies using AAVs can be involved in terms of cost, time and personnel, and many groups, including our own, are not experts on the technology. Therefore, it is important to report data using AAVs with the research community as a guide for ongoing and future studies. Here, we detail our initial experience with the two most prevalent AAVs with tropism for brain endothelial cells, AAV-BR1 and AAV-BI30. One of our long-term goals is to express key proteins in brain endothelial cells and determine the impact on brain function. For method development, we administered AAV-BR1 and AAV-BI30 with a CMV-driven fluorescent reporter (CMV-P2A-mCherry) to wild-type mice intravenously (retro-orbital) and measured expression in brain and peripheral tissues by RT-PCR and immunostaining. We found that AAV-BR1 transduces neurons and endothelial cells in the brain, and the lung and liver, whereas AAV-BI30 transduces brain endothelial cells and peripheral tissue. Our data highlights the importance of using the AAV best suited to the scientific question.
Collapse
Affiliation(s)
- Felecia M Marottoli
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Rohan Chaudhary
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah E Lutz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Hosseini K, Fallahi J, Razban V, Sirat RZ, Varasteh M, Tarhriz V. Overview of clinical, molecular, and therapeutic features of Niemann-Pick disease (types A, B, and C): Focus on therapeutic approaches. Cell Biochem Funct 2024; 42:e4028. [PMID: 38715125 DOI: 10.1002/cbf.4028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 06/30/2024]
Abstract
Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.
Collapse
Affiliation(s)
- Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Körbelin J, Arrulo A, Schwaninger M. Gene therapy targeting the blood-brain barrier. VITAMINS AND HORMONES 2024; 126:191-217. [PMID: 39029973 DOI: 10.1016/bs.vh.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Endothelial cells are the building blocks of vessels in the central nervous system (CNS) and form the blood-brain barrier (BBB). An intact BBB limits permeation of large hydrophilic molecules into the CNS. Thus, the healthy BBB is a major obstacle for the treatment of CNS disorders with antibodies, recombinant proteins or viral vectors. Several strategies have been devised to overcome the barrier. A key principle often consists in attaching the therapeutic compound to a ligand of receptors expressed on the BBB, for example, the transferrin receptor (TfR). The fusion molecule will bind to TfR on the luminal side of brain endothelial cells, pass the endothelial layer by transcytosis and be delivered to the brain parenchyma. However, attempts to endow therapeutic compounds with the ability to cross the BBB can be difficult to implement. An alternative and possibly more straight-forward approach is to produce therapeutic proteins in the endothelial cells that form the barrier. These cells are accessible from blood circulation and have a large interface with the brain parenchyma. They may be an ideal production site for therapeutic protein and afford direct supply to the CNS.
Collapse
Affiliation(s)
- Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, UKE Hamburg-Eppendorf, Hamburg, Germany
| | - Adriana Arrulo
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany.
| |
Collapse
|
4
|
Kremer R, Williams A. AAV-BR1 does not target endothelial cells in Sprague Dawley rats unlike in mice. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001120. [PMID: 38495586 PMCID: PMC10940898 DOI: 10.17912/micropub.biology.001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Adeno-associated viruses (AAVs) are a popular tool in gene therapy approaches and have been engineered to specifically target different cells. There is interest in targeting endothelial cells (ECs) of the blood brain barrier and the AAV2 capsid variant BR1 has been found to transduce ECs with high selectivity in various mice models. However, this has not been tested in rat models. Here, we show that there is no EC transduction with systemic injection of the AAV-BR1-CAG-GFP virus in Sprague-Dawley rats (n=3), but instead transduction of brain parenchymal cells with neuronal morphology. These findings emphasize the importance of species-differences in use of AAVs.
Collapse
Affiliation(s)
- Ronja Kremer
- Institute for Regeneration & Repair, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Anna Williams
- Institute for Regeneration & Repair, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
5
|
Moos T, Thomsen MS, Burkhart A, Hede E, Laczek B. Targeted transport of biotherapeutics at the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1823-1838. [PMID: 38059358 DOI: 10.1080/17425247.2023.2292697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION The treatment of neurological diseases is significantly hampered by the lack of available therapeutics. A major restraint for the development of drugs is denoted by the presence of the blood-brain barrier (BBB), which precludes the transfer of biotherapeutics to the brain due to size restraints. AREAS COVERED Novel optimism for transfer of biotherapeutics to the brain has been generated via development of targeted therapeutics to nutrient transporters expressed by brain capillary endothelial cells (BCECs). Targeting approaches with antibodies acting as biological drug carriers allow for proteins and genetic material to enter the brain, and qualified therapy using targeted proteins for protein replacement has been observed in preclinical models and now emerging in the clinic. Viral vectors denote an alternative for protein delivery to the brain by uptake and transduction of BCECs, or by transport through the BBB leading to neuronal transduction. EXPERT OPINION The breaching of the BBB to large molecules has opened for treatment of diseases in the brain. A sturdier understanding of how biotherapeutics undergo transport through the BBB and how successful transport into the brain can be monitored is required to further improve the translation from successful preclinical studies to the clinic.
Collapse
Affiliation(s)
- Torben Moos
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Annette Burkhart
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Eva Hede
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Bartosz Laczek
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Aydin S, Pareja J, Schallenberg VM, Klopstein A, Gruber T, Page N, Bouillet E, Blanchard N, Liblau R, Körbelin J, Schwaninger M, Johnson AJ, Schenk M, Deutsch U, Merkler D, Engelhardt B. Antigen recognition detains CD8 + T cells at the blood-brain barrier and contributes to its breakdown. Nat Commun 2023; 14:3106. [PMID: 37253744 PMCID: PMC10229608 DOI: 10.1038/s41467-023-38703-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Blood-brain barrier (BBB) breakdown and immune cell infiltration into the central nervous system (CNS) are early hallmarks of multiple sclerosis (MS). High numbers of CD8+ T cells are found in MS lesions, and antigen (Ag) presentation at the BBB has been proposed to promote CD8+ T cell entry into the CNS. Here, we show that brain endothelial cells process and cross-present Ag, leading to effector CD8+ T cell differentiation. Under physiological flow in vitro, endothelial Ag presentation prevented CD8+ T cell crawling and diapedesis resulting in brain endothelial cell apoptosis and BBB breakdown. Brain endothelial Ag presentation in vivo was limited due to Ag uptake by CNS-resident macrophages but still reduced motility of Ag-specific CD8+ T cells within CNS microvessels. MHC class I-restricted Ag presentation at the BBB during neuroinflammation thus prohibits CD8+ T cell entry into the CNS and triggers CD8+ T cell-mediated focal BBB breakdown.
Collapse
Affiliation(s)
- Sidar Aydin
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Javier Pareja
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Nicolas Blanchard
- Toulouse Institute for infectious and inflammatory diseases, University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Roland Liblau
- Toulouse Institute for infectious and inflammatory diseases, University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Aaron J Johnson
- Mayo Clinic Graduate School of Biomedical Sciences, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | | |
Collapse
|
7
|
Tropism of the Novel AAVBR1 Capsid Following Subretinal Delivery. Int J Mol Sci 2022; 23:ijms23147738. [PMID: 35887086 PMCID: PMC9317317 DOI: 10.3390/ijms23147738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
A serious limitation of current adeno-associated viral (AAV) capsids employed for subretinal delivery is achieving adequate lateral spread beyond the injection site, required for the efficient delivery of gene therapy to the outer retina and/or RPE. AAVBR1 is a unique AAV with exceptional tropism for CNS microvasculature following systemic delivery. Here, we used in vivo and ex vivo analysis to show that subretinal delivery of AAVBR1.GFP in mice achieves superior tropism to RPE and outer retina than either AAV2.GFP or AAV8.GFP, two of the most common capsids used for subretinal delivery. At a low (5 × 108 vg) subretinal dose, the AAVBR1.GFP signal was visible by 48 h and significantly surpassed peak fluorescence of other AAVs in retina and RPE. The co-injection of AAVBR1.GFP with the AAVBR1-specific heptapeptide, NRGTEWD, significantly blocked the AAVBR1.GFP signal, but had no effect on AAV2.GFP fluorescence, confirming that AAVBR1’s enhanced tropism for RPE and outer retina derives from this 7AA modification within the capsid-binding motif. Enhanced dispersal and consequent transduction suggest that AAVBR1 can be employed at a lower dosage than the standard AAV2 capsid to achieve equivalent expression for gene therapy, warranting further evaluation of its utility as a therapeutic vehicle for subretinal delivery.
Collapse
|