1
|
Kim JH, Choi DE, Shin HS. The lateralized LC-NAergic system distinguishes vicarious versus direct fear in mice. Nat Commun 2025; 16:2364. [PMID: 40064917 PMCID: PMC11894102 DOI: 10.1038/s41467-025-57701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Fear can be induced either directly through self-experience of aversive events or vicariously by observing conspecifics experiencing such events. The locus coeruleus-norepinephrine (LC-NA) system is crucial in fear responses and cognitive processes. We investigated whether the LC-NA system differentially processes these two types of fear, direct and vicarious in male mice. The results highlighted that the right hemisphere LC→anterior cingulate cortex pathway is uniquely crucial for vicarious fear, while the two inputs to the LC-from the bed nucleus of the stria terminalis (BNST) and the central amygdala (CeA)-differentially contribute to fear processing. The BNST plays a more targeted role in vicarious fear, and the CeA has a broader influence on fear in general. This underscores the complexity and specialization within the LC-NA system for fear-processing.
Collapse
Affiliation(s)
- Jong-Hyun Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yusung-gu, Daejeon, 34126, Republic of Korea
| | - Da-Eun Choi
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yusung-gu, Daejeon, 34126, Republic of Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yusung-gu, Daejeon, 34126, Republic of Korea.
- IBS School, University of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
2
|
Sharma A, Rudrawar S, Bharate SB, Jadhav HR. Recent advancements in the therapeutic approaches for Alzheimer's disease treatment: current and future perspective. RSC Med Chem 2025; 16:652-693. [PMID: 39790124 PMCID: PMC11707861 DOI: 10.1039/d4md00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Alzheimer's disease (AD) is a complex, incurable neurological condition characterized by cognitive decline, cholinergic neuron reduction, and neuronal loss. Its exact pathology remains uncertain, but multiple treatment hypotheses have emerged. The current treatments, single or combined, alleviate only symptoms and struggle to manage AD due to its multifaceted pathology. The developmental drugs target pivotal disease factors involved in the envisaged hypotheses and include targets such as amyloid aggregation, hyperphosphorylated tau proteins, and receptors like cholinergic, adrenergic, etc. Present-day research focuses on multi-target directed ligands (MTDLs), which inhibit multiple factors simultaneously, helping slow the disease's progression. This review attempts to collate the recent information related to proposed hypotheses for AD etiology. It systematically organizes the advances in various therapeutic options for AD, with a particular emphasis on clinical candidates. Also, it is expected to help medicinal chemists design novel AD treatments based on available information, which could be helpful to AD patients.
Collapse
Affiliation(s)
- Amit Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani Pilani Campus, Vidya Vihar Pilani 333031 RJ India +91 1596 244183 +91 1596 255 506
| | - Santosh Rudrawar
- The Institute for Biomedicine and Glycomics, Griffith University Gold Coast 4222 Australia
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast 4222 Australia
| | - Sandip B Bharate
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 181110 India
| | - Hemant R Jadhav
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani Pilani Campus, Vidya Vihar Pilani 333031 RJ India +91 1596 244183 +91 1596 255 506
| |
Collapse
|
3
|
Groo AC, Curel T, Malzert-Fréon A, Séguy L, Bento O, Corvaisier S, Culerier T, Legrand R, Callizot N, Henriques A, Culley G, Claeysen S, Rochais C, Dallemagne P. Evidence from a mouse model supports repurposing an anti-asthmatic drug, bambuterol, against Alzheimer's disease by administration through an intranasal route. Commun Biol 2025; 8:155. [PMID: 39893320 PMCID: PMC11787381 DOI: 10.1038/s42003-025-07599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
Bambuterol is a long-acting anti-asthmatic prodrug which releases terbutaline. Terbutaline is an agonist of the β2-adrenergic receptors which is formed by decarbamoylation of bambuterol by butyrylcholinesterase. Inhibition of the latter, as well as activation of β2-AR, are of interest for the treatment of Alzheimer's disease (AD). Combining these two activities, bambuterol could express a good clinical efficacy against AD. The present work firstly confirmed the capacity of bambuterol to display in cellulo neuroprotective activities, reduction of Tau hyperphosphorylation and preservation of synapses in rat hippocampal neuronal cultures intoxicated with Aβ peptides. Further, bambuterol, in the form of a liposomal gel, showed a good bioavailability in CNS after intranasal administration, which should reduce any side effects linked to peripheral terbutaline release. Indeed, even if the latter is more selective than other β2-mimetics towards bronchial β2-AR, cardiovascular effects (tachycardia, arrhythmias…) could occur upon cardiac β1-AR activation. Finally, intranasal administration of low doses of bambuterol gel in mice intoxicated with Aβ peptides, prevented long-term spatial memory impairment and showed beneficial effects on the survival of neurons and on synapse preservation.
Collapse
Affiliation(s)
- Anne-Claire Groo
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France
| | - Thomas Curel
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | | | - Line Séguy
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France
| | - Ophélie Bento
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Sophie Corvaisier
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France
| | - Thomas Culerier
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France
| | - Romain Legrand
- RONOMA Pharma, 31 rue Léon Delille, F-76800, Saint Etienne du Rouvray, France
| | - Noëlle Callizot
- Neuro-Sys, 410 chemin départemental 60, F-13120, Gardanne, France
| | | | - Georgia Culley
- Neuro-Sys, 410 chemin départemental 60, F-13120, Gardanne, France
| | - Sylvie Claeysen
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Christophe Rochais
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France.
| | - Patrick Dallemagne
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000, Caen, France.
| |
Collapse
|
4
|
Xu YQ, Chen Y, Xing JX, Yao J. Relationship between enriched environment and neurodegeneration: a review from mechanism to therapy. Clin Epigenetics 2025; 17:13. [PMID: 39849536 PMCID: PMC11761206 DOI: 10.1186/s13148-025-01820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Abstract
Enriched environment (EE), as a non-pharmacological intervention, has garnered considerable attention for its potential to ameliorate neurodegenerative diseases (NDs). This review delineated the impact of EE on the biological functions associated with NDs, emphasizing its role in enhancing neural plasticity, reducing inflammation, and bolstering cognitive performance. We discussed the molecular underpinnings of the effects of EE, including modulation of key signaling pathways such as extracellular regulated kinase 1/2 (ERK1/2), mitogen-activated protein kinases (MAPK), and AMPK/SIRT1, which were implicated in neuroprotection and synaptic plasticity. Additionally, we scrutinized the influence of EE on epigenetic modifications and autophagy, processes pivotal to ND pathogenesis. Animal models, encompassing both rodents and larger animals, offer insights into the disease-modifying effects of EE, underscoring its potential as a complementary approach to pharmacological interventions. In summary, EE emerges as a promising strategy to augment cognitive function and decelerate the progression of NDs.
Collapse
Affiliation(s)
- Yuan-Qiao Xu
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenbei New District, No.77, Puhe Road, Shenyang, 110122, People's Republic of China
| | - Yanjiao Chen
- Shanxi Provincial People's Hospital, Taiyuan, People's Republic of China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenbei New District, No.77, Puhe Road, Shenyang, 110122, People's Republic of China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenbei New District, No.77, Puhe Road, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
5
|
Miliotou AN, Kotsoni A, Zacharia LC. Deciphering the Role of Adrenergic Receptors in Alzheimer's Disease: Paving the Way for Innovative Therapies. Biomolecules 2025; 15:128. [PMID: 39858522 PMCID: PMC11764010 DOI: 10.3390/biom15010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases are currently among the most devastating diseases with no effective disease-modifying drugs in the market, with Alzheimer's disease (AD) being the most prevalent. AD is a complex multifactorial neurodegenerative disorder characterized by progressive and severe cognitive impairment and memory loss. It is the most common cause of progressive memory loss (dementia) in the elderly, and to date, there is no effective treatment to cure or slow disease progression substantially. The role of adrenergic receptors in the pathogenesis of Alzheimer's disease and other tauopathies is poorly understood or investigated. Recently, some studies indicated a potential benefit of drugs acting on the adrenergic receptors for AD and dementias, although due to the heterogeneity of the drug classes used, the results on the whole remain inconclusive. The scope of this review article is to comprehensively review the literature on the possible role of adrenergic receptors in neurodegenerative diseases, stemming from the use of agonists and antagonists including antihypertensive and asthma drugs acting on the adrenergic receptors, but also from animal models and in vitro models where these receptors have been studied. Ultimately, we hope to obtain a better understanding of the role of these receptors, identify the gaps in knowledge, and explore the possibility of repurposing such drugs for AD, given their long history of use and safety.
Collapse
Affiliation(s)
- Androulla N. Miliotou
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus; (A.N.M.)
| | - Andria Kotsoni
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus; (A.N.M.)
| | - Lefteris C. Zacharia
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus; (A.N.M.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus
| |
Collapse
|
6
|
Lagarde J, Olivieri P, Tonietto M, Noiray C, Lehericy S, Valabrègue R, Caillé F, Gervais P, Moussion M, Bottlaender M, Sarazin M. Combined in vivo MRI assessment of locus coeruleus and nucleus basalis of Meynert integrity in amnestic Alzheimer's disease, suspected-LATE and frontotemporal dementia. Alzheimers Res Ther 2024; 16:97. [PMID: 38702802 PMCID: PMC11067144 DOI: 10.1186/s13195-024-01466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The locus coeruleus (LC) and the nucleus basalis of Meynert (NBM) are altered in early stages of Alzheimer's disease (AD). Little is known about LC and NBM alteration in limbic-predominant age-related TDP-43 encephalopathy (LATE) and frontotemporal dementia (FTD). The aim of the present study is to investigate in vivo LC and NBM integrity in patients with suspected-LATE, early-amnestic AD and FTD in comparison with controls. METHODS Seventy-two participants (23 early amnestic-AD patients, 17 suspected-LATE, 17 FTD patients, defined by a clinical-biological diagnosis reinforced by amyloid and tau PET imaging, and 15 controls) underwent neuropsychological assessment and 3T brain MRI. We analyzed the locus coeruleus signal intensity (LC-I) and the NBM volume as well as their relation with cognition and with medial temporal/cortical atrophy. RESULTS We found significantly lower LC-I and NBM volume in amnestic-AD and suspected-LATE in comparison with controls. In FTD, we also observed lower NBM volume but a slightly less marked alteration of the LC-I, independently of the temporal or frontal phenotype. NBM volume was correlated with the global cognitive efficiency in AD patients. Strong correlations were found between NBM volume and that of medial temporal structures, particularly the amygdala in both AD and FTD patients. CONCLUSIONS The alteration of LC and NBM in amnestic-AD, presumed-LATE and FTD suggests a common vulnerability of these structures to different proteinopathies. Targeting the noradrenergic and cholinergic systems could be effective therapeutic strategies in LATE and FTD.
Collapse
Affiliation(s)
- Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France.
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France.
- Université Paris-Cité, Paris, France.
| | - Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Matteo Tonietto
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Camille Noiray
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Stéphane Lehericy
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, F-75013, France
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, F-75013, France
| | - Romain Valabrègue
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, F-75013, France
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, F-75013, France
| | - Fabien Caillé
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Philippe Gervais
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Martin Moussion
- Centre d'Evaluation Troubles Psychiques et Vieillissement, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, F-75014, France
| | - Michel Bottlaender
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
- UNIACT, Neurospin, Gif-sur-Yvette, CEA, F-91191, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
- Université Paris-Cité, Paris, France
| |
Collapse
|
7
|
Hu C, Li H, Huang L, Wang R, Wang Z, Ma R, Chang B, Li S, Li H, Li G. Periodontal disease and risk of Alzheimer's disease: A two-sample Mendelian randomization. Brain Behav 2024; 14:e3486. [PMID: 38648391 PMCID: PMC11034860 DOI: 10.1002/brb3.3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Evidence from observational studies and clinical trials suggests an association between periodontal disease and Alzheimer's disease (AD). However, the causal relationship between periodontal disease and AD remains to be determined. METHODS We obtained periodontal disease data from the FinnGen database and two sets of AD data from the IEU consortium and PGC databases. Subsequently, we conducted a two-sample Mendelian randomization (MR) analysis to investigate the causal relationship between periodontal disease and AD. RESULTS The results of the random-effects IVW analysis revealed no evidence of a genetic causal relationship between periodontal disease and AD, regardless of whether the AD data from the IEU consortium or the AD data from the PGC database were utilized. No heterogeneity, multiple effects of levels, or outliers were observed in this study. CONCLUSIONS Our findings indicate that there is no causal relationship between periodontal disease and AD at the genetic level.
Collapse
Affiliation(s)
- Conglei Hu
- Graduate SchoolAir Force Medical UniversityXi'anChina
| | - Hui Li
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital, Southwest Medical University, Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationLuzhouChina
| | - Liping Huang
- Institute of StomatologySouthwest Medical UniversityLuzhouChina
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, School of StomatologyAir Force Medical UniversityXi'anChina
| | - Rui Wang
- Department of Epidemiology and Statistics, School of Public HealthSouthwest Medical UniversityLuzhouChina
| | - Zeyu Wang
- Graduate SchoolAir Force Medical UniversityXi'anChina
| | - Rui Ma
- Graduate SchoolAir Force Medical UniversityXi'anChina
| | - Bei Chang
- Department of StomatologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Shiting Li
- Institute of StomatologySouthwest Medical UniversityLuzhouChina
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, School of StomatologyAir Force Medical UniversityXi'anChina
| | - Hongcai Li
- Department of StomatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guangwen Li
- Institute of StomatologySouthwest Medical UniversityLuzhouChina
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, School of StomatologyAir Force Medical UniversityXi'anChina
- Department of Medical Education, Tangdu HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
8
|
Del Rosario Hernández T, Gore SV, Kreiling JA, Creton R. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles. Biomed Pharmacother 2024; 171:116096. [PMID: 38185043 PMCID: PMC10922774 DOI: 10.1016/j.biopha.2023.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Lalonde R, Strazielle C. One-Trial Appetitive Learning Tasks for Drug Targeting. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:680-686. [PMID: 37287290 DOI: 10.2174/1871527322666230607152758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
One-trial appetitive learning developed from one-trial passive avoidance learning as a standard test of retrograde amnesia. It consists of one learning trial followed by a retention test, in which physiological manipulations are presented. As in passive avoidance learning, food- or waterdeprived rats or mice finding food or water inside an enclosure are vulnerable to the retrograde amnesia produced by electroconvulsive shock treatment or the injection of various drugs. In one-trial taste or odor learning conducted in rats, birds, snails, bees, and fruit flies, there is an association between a food item or odorant and contextual stimuli or the unconditioned stimulus of Pavlovian conditioning. The odor-related task in bees was sensitive to protein synthesis inhibition as well as cholinergic receptor blockade, both analogous to results found on the passive avoidance response in rodents, while the task in fruit flies was sensitive to genetic modifications and aging, as seen in the passive avoidance response of genetically modified and aged rodents. These results provide converging evidence of interspecies similarities underlying the neurochemical basis of learning.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandoeuvre-les- Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandoeuvre-les- Nancy, France
- CHRU Nancy, Vandoeuvre-les-Nancy, France
| |
Collapse
|
10
|
Hernández TDR, Gore SV, Kreiling JA, Creton R. Finding Drug Repurposing Candidates for Neurodegenerative Diseases using Zebrafish Behavioral Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557235. [PMID: 37745452 PMCID: PMC10515830 DOI: 10.1101/2023.09.12.557235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
11
|
Nascimento GG, Leite FR, Mesquita CM, Vidigal MTC, Borges GH, Paranhos LR. Confounding in observational studies evaluating the association between Alzheimer's disease and periodontal disease: A systematic review. Heliyon 2023; 9:e15402. [PMID: 37128313 PMCID: PMC10147971 DOI: 10.1016/j.heliyon.2023.e15402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Background Studies investigating the association between periodontitis and Alzheimer's disease (AD) suggested indirect (periodontitis would increase the circulation of inflammation-inducible molecules) and direct (periodontopathogens might colonize brains affected by Alzheimer's disease) pathways. While there seems to be a positive relationship between periodontitis and AD, concerns have been raised about the role of confounding. Aim To systematically review the literature to assess confounding and their level of heterogeneity in the association between periodontitis and AD. Also, to examine data reporting and interpretation regarding confounding bias. Methods This review followed the PRISMA guidelines and was registered within PROSPERO. Electronic searches were performed in seven main databases and three others to capture the "grey literature". The PECO strategy was used to identify observational studies (cross-sectional, case-control, or cohort studies) assessing the association between periodontal disease and AD without restricting publication language and year. Critical appraisal was performed according to the Joanna Briggs Institute guidelines. Confounders were evaluated following a two-step approach. Results A total of 3255 studies were found, of which 18 (13 case-control, four cross-sectional, and one cohort) met the eligibility criteria. Participants with AD were 1399 (mean age 64 ± 9 to 84.8 ± 5.6 years), whereas those without AD were 1730 (mean age 62.6 ± 7.1 to 81.4 ± 4.6). Female patients composed most of the sample for both groups. The confounding variables "age" and "sex" were present in all studies. Four studies used the 2017 AAP/EFP periodontal classification. Most studies had a low risk of bias. Fifty percent of the articles did not consider confounding; variation in the adjustment approaches was observed. Additionally, 62% of the studies did not mention bias, and 40% did not discuss any limitations about confounders. Conclusions Given the study's limitations, caution must be taken to properly interpret the association between periodontitis and AD.Registration: CRD42022293884.
Collapse
Affiliation(s)
- Gustavo G. Nascimento
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore
- Oral Health ACP, Duke-NUS Medical School, Singapore
- Corresponding author. National Dental Research Institute Singapore National Dental Centre Singapore, 5 Second Hospital Avenue, 168938, Singapore.
| | - Fábio R.M. Leite
- National Dental Research Institute Singapore, National Dental Centre Singapore, Singapore
- Oral Health ACP, Duke-NUS Medical School, Singapore
| | - Caio Melo Mesquita
- School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Maria Tereza Campos Vidigal
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Guilherme Henrique Borges
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luiz Renato Paranhos
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
- Department of Preventive and Community Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|