1
|
Hauw JJ, Hausser-Hauw C, Barthélémy C. Synapse and primary cilia dysfunctions in Autism Spectrum Disorders. Avenues to normalize these functions. Rev Neurol (Paris) 2024; 180:1059-1070. [PMID: 38925998 DOI: 10.1016/j.neurol.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
AIM An update on the plasticity of the brain networks involved in autism (autism spectrum disorders [ASD]), and the increasing role of their synapses and primary non-motile cilia. METHODS Data from PubMed and Google on this subject, published until February 2024, were analyzed. RESULTS Structural and functional brain characteristics and genetic particularities involving synapses and cilia that modify neuronal circuits are observed in ASD, such as reduced pruning of dendrites, minicolumnar pathology, or persistence of connections usually doomed to disappear. Proteins involved in synapse functions (such as neuroligins and neurexins), in the postsynaptic architectural scaffolding (such as Shank proteins) or in cilia functions (such as IFT-independent kinesins) are often abnormal. There is an increase in glutaminergic transmission and a decrease in GABA inhibition. ASD may occur in genetic ciliopathies. The means of modulating these specificities, when deemed useful, are described. INTERPRETATION The wide range of clinical manifestations of ASD is strongly associated with abnormalities in the morphology, functions, and plasticity of brain networks, involving their synapses and non-motile cilia. Their modulation offers important research perspectives on treatments when needed, especially since brain plasticity persists much later than previously thought. Improved early detection of ASD and additional studies on synapses and primary cilia are needed.
Collapse
Affiliation(s)
- J-J Hauw
- Académie nationale de médecine, 16, rue Bonaparte, 75272 Paris cedex 06, France; Laboratoire de neuropathologie Raymond-Escourolle, hôpital universitaire Pitié-Salpêtrière, Paris, France.
| | | | - C Barthélémy
- Académie nationale de médecine, 16, rue Bonaparte, 75272 Paris cedex 06, France; Faculté de médecine, université de Tours, Tours, France; GIS Autisme et troubles du neurodéveloppement, Paris, France
| |
Collapse
|
2
|
Hanzel M, Fernando K, Maloney SE, Horn Z, Gong S, Mätlik K, Zhao J, Pasolli HA, Heissel S, Dougherty JD, Hull C, Hatten ME. Mice lacking Astn2 have ASD-like behaviors and altered cerebellar circuit properties. Proc Natl Acad Sci U S A 2024; 121:e2405901121. [PMID: 39150780 PMCID: PMC11348334 DOI: 10.1073/pnas.2405901121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/05/2024] [Indexed: 08/18/2024] Open
Abstract
Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. Individuals with ASTN2 mutations exhibit neurodevelopmental disorders, including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), learning difficulties, and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional Astn2 knockout (KO and cKO, respectively) mouse lines. Astn2 KO mice exhibit strong ASD-related behavioral phenotypes, including a marked decrease in separation-induced pup ultrasonic vocalization calls, hyperactivity, repetitive behaviors, altered behavior in the three-chamber test, and impaired cerebellar-dependent eyeblink conditioning. Hyperactivity and repetitive behaviors are also prominent in Astn2 cKO animals, but they do not show altered behavior in the three-chamber test. By Golgi staining, Astn2 KO PCs have region-specific changes in dendritic spine density and filopodia numbers. Proteomic analysis of Astn2 KO cerebellum reveals a marked upregulation of ASTN2 family member, ASTN1, a neuron-glial adhesion protein. Immunohistochemistry and electron microscopy demonstrate a significant increase in Bergmann glia volume in the molecular layer of Astn2 KO animals. Electrophysiological experiments indicate a reduced frequency of spontaneous excitatory postsynaptic currents (EPSCs), as well as increased amplitudes of both spontaneous EPSCs and inhibitory postsynaptic currents in the Astn2 KO animals, suggesting that pre- and postsynaptic components of synaptic transmission are altered. Thus, ASTN2 regulates ASD-like behaviors and cerebellar circuit properties.
Collapse
Affiliation(s)
- Michalina Hanzel
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - Kayla Fernando
- Neurobiology Department, Duke University, Durham, NC27710
| | - Susan E. Maloney
- Department of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St. Louis, MO63130
| | - Zachi Horn
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
- InVitro Cell Research LLC, Englewood, NJ07631
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer’s Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY10021
| | - Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - Jiajia Zhao
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY10065
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY10065
| | - Joseph D. Dougherty
- Department of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St. Louis, MO63130
- Department of Genetics, Washington University Medical School, St. Louis, MO63130
| | - Court Hull
- Neurobiology Department, Duke University, Durham, NC27710
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| |
Collapse
|
3
|
Goel K, Chhetri A, Ludhiadch A, Munshi A. Current Update on Categorization of Migraine Subtypes on the Basis of Genetic Variation: a Systematic Review. Mol Neurobiol 2024; 61:4804-4833. [PMID: 38135854 DOI: 10.1007/s12035-023-03837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Migraine is a complex neurovascular disorder that is characterized by severe behavioral, sensory, visual, and/or auditory symptoms. It has been labeled as one of the ten most disabling medical illnesses in the world by the World Health Organization (Aagaard et al Sci Transl Med 6(237):237ra65, 2014). According to a recent report by the American Migraine Foundation (Shoulson et al Ann Neurol 25(3):252-9, 1989), around 148 million people in the world currently suffer from migraine. On the basis of presence of aura, migraine is classified into two major subtypes: migraine with aura (Aagaard et al Sci Transl Med 6(237):237ra65, 2014) and migraine without aura. (Aagaard K et al Sci Transl Med 6(237):237ra65, 2014) Many complex genetic mechanisms have been proposed in the pathophysiology of migraine but specific pathways associated with the different subtypes of migraine have not yet been explored. Various approaches including candidate gene association studies (CGAS) and genome-wide association studies (Fan et al Headache: J Head Face Pain 54(4):709-715, 2014). have identified the genetic markers associated with migraine and its subtypes. Several single nucleotide polymorphisms (Kaur et al Egyp J Neurol, Psychiatry Neurosurg 55(1):1-7, 2019) within genes involved in ion homeostasis, solute transport, synaptic transmission, cortical excitability, and vascular function have been associated with the disorder. Currently, the diagnosis of migraine is majorly behavioral with no focus on the genetic markers and thereby the therapeutic intervention specific to subtypes. Therefore, there is a need to explore genetic variants significantly associated with MA and MO as susceptibility markers in the diagnosis and targets for therapeutic interventions in the specific subtypes of migraine. Although the proper characterization of pathways based on different subtypes is yet to be studied, this review aims to make a first attempt to compile the information available on various genetic variants and the molecular mechanisms involved with the development of MA and MO. An attempt has also been made to suggest novel candidate genes based on their function to be explored by future research.
Collapse
Affiliation(s)
- Kashish Goel
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Aakash Chhetri
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
4
|
Hayashi Y, Okumura H, Arioka Y, Kushima I, Mori D, Lo T, Otgonbayar G, Kato H, Nawa Y, Kimura H, Aleksic B, Ozaki N. Analysis of human neuronal cells carrying ASTN2 deletion associated with psychiatric disorders. Transl Psychiatry 2024; 14:236. [PMID: 38830862 PMCID: PMC11148150 DOI: 10.1038/s41398-024-02962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Recent genetic studies have found common genomic risk variants among psychiatric disorders, strongly suggesting the overlaps in their molecular and cellular mechanism. Our research group identified the variant in ASTN2 as one of the candidate risk factors across these psychiatric disorders by whole-genome copy number variation analysis. However, the alterations in the human neuronal cells resulting from ASTN2 variants identified in patients remain unknown. To address this, we used patient-derived and genome-edited iPS cells with ASTN2 deletion; cells were further differentiated into neuronal cells. A comprehensive gene expression analysis using genome-edited iPS cells with variants on both alleles revealed that the expression level of ZNF558, a gene specifically expressed in human forebrain neural progenitor cells, was greatly reduced in ASTN2-deleted neuronal cells. Furthermore, the expression of the mitophagy-related gene SPATA18, which is repressed by ZNF558, and mitophagy activity were increased in ASTN2-deleted neuronal cells. These phenotypes were also detected in neuronal cells differentiated from patient-derived iPS cells with heterozygous ASTN2 deletion. Our results suggest that ASTN2 deletion is related to the common pathogenic mechanism of psychiatric disorders by regulating mitophagy via ZNF558.
Collapse
Affiliation(s)
- Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Okumura
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Japan
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan.
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Ranieri A, La Monica I, Di Iorio MR, Lombardo B, Pastore L. Genetic Alterations in a Large Population of Italian Patients Affected by Neurodevelopmental Disorders. Genes (Basel) 2024; 15:427. [PMID: 38674362 PMCID: PMC11050211 DOI: 10.3390/genes15040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodevelopmental disorders are a group of complex multifactorial disorders characterized by cognitive impairment, communication deficits, abnormal behaviour, and/or motor skills resulting from abnormal neural development. Copy number variants (CNVs) are genetic alterations often associated with neurodevelopmental disorders. We evaluated the diagnostic efficacy of the array-comparative genomic hybridization (a-CGH) method and its relevance as a routine diagnostic test in patients with neurodevelopmental disorders for the identification of the molecular alterations underlying or contributing to the clinical manifestations. In the present study, we analysed 1800 subjects with neurodevelopmental disorders using a CGH microarray. We identified 208 (7%) pathogenetic CNVs, 2202 (78%) variants of uncertain significance (VOUS), and 504 (18%) benign CNVs in the 1800 patients analysed. Some alterations contain genes potentially related to neurodevelopmental disorders including CHRNA7, ANKS1B, ANKRD11, RBFOX1, ASTN2, GABRG3, SHANK2, KIF1A SETBP1, SNTG2, CTNNA2, TOP3B, CNTN4, CNTN5, and CNTN6. The identification of interesting significant genes related to neurological disorders with a-CGH is therefore an essential step in the diagnostic procedure, allowing a better understanding of both the pathophysiology of these disorders and the mechanisms underlying their clinical manifestations.
Collapse
Affiliation(s)
- Annaluisa Ranieri
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|