1
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Li P, Lei W, Dong Y, Wang X, Ye X, Tian Y, Yang Y, Liu J, Li N, Niu X, Wang X, Tian Y, Xu L, Yang Y, Liu J. mGluR7: The new player protecting the central nervous system. Ageing Res Rev 2024; 102:102554. [PMID: 39454762 DOI: 10.1016/j.arr.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Metabotropic glutamate receptor 7 (mGluR7) belongs to the family of type III mGluR receptor, playing an important part in the central nervous system (CNS) through response to neurotransmitter regulation, reduction of excitatory toxicity, and early neuronal development. Drugs targeting mGluR7 (mGluR7 agonists, antagonists, and allosteric modulators) may be among the most promising agents for the treatment of CNS disorders, such as psychiatric disorders, neurodegenerative diseases, and neurodevelopmental impairments, though these potential therapies are at early stages and the data are still limited. In this review, we summarized the structure and function of mGluR7 and discussed recent progress on mGluR7 agonists and antagonists. A deeper understanding of mGluR7 will contribute to uncovering the molecular mechanisms of neuroprotection and providing a theoretical basis for the formulation of therapeutic strategies.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Ophthalmology, Xi'an No.1 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 30 Fenxiang Road, Xi'an 710002, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xingyan Ye
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yaru Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jie Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaochen Niu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xin Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yifan Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Lu Xu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
3
|
Bottini CLJ, MacDougall-Shackleton SA. Methylmercury effects on avian brains. Neurotoxicology 2023; 96:140-153. [PMID: 37059311 DOI: 10.1016/j.neuro.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Methylmercury (MeHg) is a concerning contaminant due to its ubiquity and harmful effects on organisms. Although birds are important models in the neurobiology of vocal learning and adult neuroplasticity, the neurotoxic effects of MeHg are less understood in birds than mammals. We surveyed the literature on MeHg effects on biochemical changes in the avian brain. Publication rates of papers related to neurology and/or birds and/or MeHg increased with time and can be linked with historical events, regulations, and increased understanding of MeHg cycling in the environment. However, publications on MeHg effects on the avian brain remain relatively low across time. The neural effects measured to evaluate MeHg neurotoxicity in birds changed with time and researcher interest. The measures most consistently affected by MeHg exposure in birds were markers of oxidative stress. NMDA, acetylcholinesterase, and Purkinje cells also seem sensitive to some extent. MeHg exposure has the potential to affect most neurotransmitter systems but more studies are needed for validation in birds. We also review the main mechanisms of MeHg-induced neurotoxicity in mammals and compare it to what is known in birds. The literature on MeHg effects on the avian brain is limited, preventing full construction of an adverse outcome pathway. We identify research gaps for taxonomic groups such as songbirds, and age- and life-stage groups such as immature fledgling stage and adult non-reproductive life stage. In addition, results are often inconsistent between experimental and field studies. We conclude that future neurotoxicological studies of MeHg impacts on birds need to better connect the numerous aspects of exposure from molecular physiological effects to behavioural outcomes that would be ecologically or biologically relevant for birds, especially under challenging conditions.
Collapse
Affiliation(s)
- Claire L J Bottini
- University of Western Ontario, Department of Biology, 1151 Richmond St., London Ontario, N6A 5B7; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada; University of Western Ontario, Department of Psychology, 1151 Richmond St., London Ontario, N6A 5C2
| |
Collapse
|
4
|
Fisher NM, Gould RW, Gogliotti RG, McDonald AJ, Badivuku H, Chennareddy S, Buch AB, Moore AM, Jenkins MT, Robb WH, Lindsley CW, Jones CK, Conn PJ, Niswender CM. Phenotypic profiling of mGlu 7 knockout mice reveals new implications for neurodevelopmental disorders. GENES BRAIN AND BEHAVIOR 2020; 19:e12654. [PMID: 32248644 DOI: 10.1111/gbb.12654] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders are characterized by deficits in communication, cognition, attention, social behavior and/or motor control. Previous studies have pointed to the involvement of genes that regulate synaptic structure and function in the pathogenesis of these disorders. One such gene, GRM7, encodes the metabotropic glutamate receptor 7 (mGlu7 ), a G protein-coupled receptor that regulates presynaptic neurotransmitter release. Mutations and polymorphisms in GRM7 have been associated with neurodevelopmental disorders in clinical populations; however, limited preclinical studies have evaluated mGlu7 in the context of this specific disease class. Here, we show that the absence of mGlu7 in mice is sufficient to alter phenotypes within the domains of social behavior, associative learning, motor function, epilepsy and sleep. Moreover, Grm7 knockout mice exhibit an attenuated response to amphetamine. These findings provide rationale for further investigation of mGlu7 as a potential therapeutic target for neurodevelopmental disorders such as idiopathic autism, attention deficit hyperactivity disorder and Rett syndrome.
Collapse
Affiliation(s)
- Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Robert W Gould
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Annalise J McDonald
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Hana Badivuku
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Susmita Chennareddy
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Aditi B Buch
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Annah M Moore
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew T Jenkins
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - W Hudson Robb
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|