1
|
Zhang L, Hernández VS, Zetter MA, Hernández-Pérez OR, Hernández-González R, Camacho-Arroyo I, Eiden LE, Millar RP. Kisspeptin fiber and receptor distribution analysis suggests its potential role in central sensorial processing and behavioral state control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556375. [PMID: 39651138 PMCID: PMC11623528 DOI: 10.1101/2023.09.05.556375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Kisspeptin (KP) signaling in the brain is defined by the anatomical distribution of KP-producing neurons, their fibers, receptors, and connectivity. Technological advances have prompted a re-evaluation of these chemoanatomical aspects, originally studied in the early years after the discovery of KP and its receptor Kiss1r. We have previously characterized(1) seven KP neuronal populations in the mouse brain at the mRNA level, including two novel populations, and examined their short-term response to gonadectomy. Methods In this study, we mapped KP fiber distribution in rats and mice using immunohistochemistry under intact and short- and long-term post-gonadectomy conditions. Kiss1r mRNA expression was examined via RNAscope, in relation to vesicular GABA transporter ( Slc32a1 ) in whole mouse brain and to KP and vesicular glutamate transporter 2 ( Kiss1 and Slc17a6 ) in hypothalamic RP3V and arcuate regions. Results We identified KP fibers in 118 brain regions, primarily in extra-hypothalamic areas associated with sensorial processing and behavioral state control. KP-immunoreactive fiber density and distribution were largely unchanged by gonadectomy. Kiss1r was expressed prominently in sensorial and state control regions such as septal nuclei, the suprachiasmatic nucleus, locus coeruleus, hippocampal layers, thalamic nuclei, and cerebellar structures. Co-expression of Kiss1r and Kiss1 was observed in hypothalamic neurons, suggesting both autocrine and paracrine KP signaling mechanisms. Conclusion These findings enhance our understanding of KP signaling beyond reproductive functions, particularly in sensorial and behavioral state regulation. This study opens new avenues for investigating KP's role in controlling complex physiological processes, including those not related to reproduction.
Collapse
|
2
|
Hernández VS, Zetter MA, Hernández-Pérez O, Hernández-González R, Camacho-Arroyo I, Millar RP, Eiden LE, Zhang L. A comprehensive chemotyping and gonadal regulation of seven kisspeptinergic neuronal populations in the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604881. [PMID: 39211104 PMCID: PMC11361108 DOI: 10.1101/2024.07.23.604881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, we present a systematic analysis, using dual and multiplex RNAscope methods, of seven kisspeptinergic neuronal populations, based on their chemotyping and distribution throughout the mouse brain. The co-expression of mRNAs coding for neuropeptides, for excitatory and inhibitory transmitter vesicular transporters, and for sex steroid receptors are described in four hypothalamic and three extra-hypothalamic nuclei. These include a newly characterized kisspeptin-expressing ventral premammillary nucleus cell group co-expressing vesicular glutamate transporter 2, pituitary adenylate cyclase-activating polypeptide and neurotensin mRNAs. Kisspeptin mRNA ( Kiss1) was observed within both somatic and dendritic compartments at a single-cell level in two hypothalamic sites, a prominent and previously undescribed feature of kisspeptin neurons in these two cell groups. Patterns of altered Kiss1 expression following gonadectomy among these seven KP populations suggest that androgen receptor signaling may also play a previously unremarked role in gonadal feedback regulation of kisspeptinergic neuronal function. Data from this study provide a chemoanatomical basis for hypothesis generation regarding the functional diversity of kisspeptinergic signaling in hypothalamic and extrahypothalamic brain.
Collapse
|
3
|
Mansano NDS, Vieira HR, Araujo-Lopes R, Szawka RE, Donato J, Frazao R. Fasting Modulates GABAergic Synaptic Transmission to Arcuate Kisspeptin Neurons in Female Mice. Endocrinology 2023; 164:bqad150. [PMID: 37793082 DOI: 10.1210/endocr/bqad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
It is well-established that the hypothalamic-pituitary-gonadal (HPG) axis is suppressed due to negative energy balance. However, less information is available on whether kisspeptin neuronal activity contributes to fasting-induced responses. In the present study, female and male mice were fasted for 24 hours or provided food ad libitum (fed group) to determine whether acute fasting is sufficient to modulate kisspeptin neuronal activity. In female mice, fasting attenuated luteinizing hormone (LH) and prolactin (PRL) serum levels and increased follicle-stimulating hormone levels compared with the fed group. In contrast, fasting did not affect gonadotropin or PRL secretion in male mice. By measuring genes related to LH pulse generation in micropunches obtained from the arcuate nucleus of the hypothalamus (ARH), we observed that fasting reduced Kiss1 mRNA levels in female and male mice. In contrast, Pdyn expression was upregulated only in fasted female mice, whereas no changes in the Tac2 mRNA levels were observed in both sexes. Interestingly, the frequency and amplitude of the GABAergic postsynaptic currents recorded from ARH kisspeptin neurons (ARHKisspeptin) were reduced in 24-hour fasted female mice but not in males. Additionally, neuropeptide Y induced a hyperpolarization in the resting membrane potential of ARHKisspeptin neurons of fed female mice but not in males. Thus, the response of ARHKisspeptin neurons to fasting is sexually dependent with a female bias, associated with changes in gonadotropins and PRL secretion. Our findings suggest that GABAergic transmission to ARHKisspeptin neurons modulates the activity of the HPG axis during situations of negative energy balance.
Collapse
Affiliation(s)
- Naira da Silva Mansano
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| | - Henrique Rodrigues Vieira
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| | - Roberta Araujo-Lopes
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Belo Horizonte, MG 31270-901, Brazil
| | - Raphael Escorsim Szawka
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Belo Horizonte, MG 31270-901, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP 05508-000, Brazil
| | - Renata Frazao
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
4
|
Blasco V, Pinto FM, Fernández-Atucha A, Dodd NP, Fernández-Sánchez M, Candenas L. Female Infertility Is Associated with an Altered Expression Profile of Different Members of the Tachykinin Family in Human Granulosa Cells. Reprod Sci 2023; 30:258-269. [PMID: 35739351 DOI: 10.1007/s43032-022-00998-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/02/2022] [Indexed: 01/11/2023]
Abstract
Neurokinin B (NKB) and its cognate receptor, NK3R, play a key role in the regulation of reproduction. NKB belongs to the family of tachykinins, which also includes substance P and neurokinin A, both encoded by the by the gene TAC1, and hemokinin-1, encoded by the TAC4 gene. In addition to NK3R, tachykinin effects are mediated by NK1R and NK2R, encoded by the genes TACR1 and TACR2, respectively. The role of these other tachykinins and receptors in the regulation of women infertility is mainly unknown. We have analyzed the expression profile of TAC1, TAC4, TACR1, and TACR2 in mural granulosa and cumulus cells from women presenting different infertility etiologies, including polycystic ovarian syndrome, advanced maternal age, low ovarian response, and endometriosis. We also studied the expression of MME, the gene encoding neprilysin, the most important enzyme involved in tachykinin degradation. Our data show that TAC1, TAC4, TACR1, TACR2, and MME expression is dysregulated in a different manner depending on the etiology of women infertility. The abnormal expression of these tachykinins and their receptors might be involved in the decreased fertility of these patients, offering a new insight regarding the diagnosis and treatment of women infertility.
Collapse
Affiliation(s)
- Víctor Blasco
- Instituto de Investigaciones Químicas, CSIC-US, Seville, Spain
- IVI-RMA Sevilla, Seville, Spain
| | | | | | - Nicolás Prados Dodd
- IVI-RMA Sevilla, Seville, Spain
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Departamento de Biología Molecular E Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain
| | - Manuel Fernández-Sánchez
- IVI-RMA Sevilla, Seville, Spain.
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
- Departamento de Biología Molecular E Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain.
- Departamento de Cirugía, Universidad de Sevilla, Seville, Spain.
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-US, Seville, Spain
| |
Collapse
|
5
|
Mansano NDS, Paradela RS, Bohlen TM, Zanardi IM, Chaves FM, Silveira MA, Tavares MR, Donato J, Frazao R. Vasoactive intestinal peptide exerts an excitatory effect on hypothalamic kisspeptin neurons during estrogen negative feedback. Mol Cell Endocrinol 2022; 542:111532. [PMID: 34915098 DOI: 10.1016/j.mce.2021.111532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/30/2022]
Abstract
Hypothalamic kisspeptin neurons are the primary modulators of gonadotropin-releasing hormone (GnRH) neurons. It has been shown that circadian rhythms driven by the suprachiasmatic nucleus (SCN) contribute to GnRH secretion. Kisspeptin neurons are potential targets of SCN neurons due to reciprocal connections with the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeN) and the arcuate nucleus of the hypothalamus (ARH). Vasoactive intestinal peptide (VIP), a notable SCN neurotransmitter, modulates GnRH secretion depending on serum estradiol levels, aging or time of the day. Considering that kisspeptin neurons may act as interneurons and mediate VIP's effects on the reproductive axis, we investigated the effects of VIP on hypothalamic kisspeptin neurons in female mice during estrogen negative feedback. Our findings indicate that VIP induces a TTX-independent depolarization of approximately 30% of AVPV/PeN kisspeptin neurons in gonad-intact (diestrus) and ovariectomized (OVX) mice. In the ARH, the percentage of kisspeptin neurons that were depolarized by VIP was even higher (approximately 90%). An intracerebroventricular infusion of VIP leds to an increased percentage of kisspeptin neurons expressing the phosphoSer133 cAMP-response-element-binding protein (pCREB) in the AVPV/PeN. On the other hand, pCREB expression in ARH kisspeptin neurons was similar between saline- and VIP-injected mice. Thus, VIP can recruit different signaling pathways to modulate AVPV/PeN or ARH kisspeptin neurons, resulting in distinct cellular responses. The expression of VIP receptors (VPACR) was upregulated in the AVPV/PeN, but not in the ARH, of OVX mice compared to mice on diestrus and estradiol-primed OVX mice. Our findings indicate that VIP directly influences distinct cellular aspects of the AVPV/PeN and ARH kisspeptin neurons during estrogen negative feedback, possibly to influence pulsatile LH secretion.
Collapse
Affiliation(s)
- Naira da Silva Mansano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Regina Silva Paradela
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tabata M Bohlen
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Izabela M Zanardi
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Machado Chaves
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marina Augusto Silveira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariana Rosolen Tavares
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
de Paula DG, Bohlen TM, Zampieri TT, Mansano NS, Vieira HR, Gusmao DO, Wasinski F, Donato J, Frazao R. Distinct effects of growth hormone deficiency and disruption of hypothalamic kisspeptin system on reproduction of male mice. Life Sci 2021; 285:119970. [PMID: 34562435 DOI: 10.1016/j.lfs.2021.119970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Growth hormone (GH) deficiency is a common cause of late sexual maturation and fertility issues. To determine whether GH-induced effects on reproduction are associated with alterations in hypothalamic kisspeptin system, we studied the male reproduction in two distinct GH deficiency mouse models. In the first model, mice present GH deficiency secondary to arcuate nucleus of the hypothalamus (ARH) lesions induced by posnatal monosodium glutamate (MSG) injections. MSG-induced ARH lesions led to significant reductions in hypothalamic Ghrh mRNA expression and consequently growth. Hypothalamic Kiss1 mRNA expression and Kiss1-expressing cells in the ARH were disrupted in the MSG-treated mice. In contrast, kisspeptin immunoreactivity remained preserved in the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeN) of MSG-treated mice. Importantly, ARH lesions caused late sexual maturation and infertility in male mice. In our second mouse model, we studied animals profound GH deficiency due to a loss-of-function mutation in the Ghrhr gene (Ghrhrlit/lit mice). Interestingly, although Ghrhrlit/lit mice exhibited late puberty onset, hypothalamic Kiss1 mRNA expression and hypothalamic kisspeptin fiber density were normal in Ghrhrlit/lit mice. Despite presenting dwarfism, the majority of Ghrhrlit/lit male mice were fertile. These findings suggest that spontaneous GH deficiency during development does not compromise the kisspeptin system. Furthermore, ARH Kiss1-expressing neurons are required for fertility, while AVPV/PeN kisspeptin expression is sufficient to allow maturation of the hypothalamic-pituitary-gonadal axis in male mice.
Collapse
Affiliation(s)
- Daniella G de Paula
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tabata M Bohlen
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Naira S Mansano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Henrique R Vieira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela O Gusmao
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Frederick Wasinski
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Coen CW, Bennett NC, Holmes MM, Faulkes CG. Neuropeptidergic and Neuroendocrine Systems Underlying Eusociality and the Concomitant Social Regulation of Reproduction in Naked Mole-Rats: A Comparative Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:59-103. [PMID: 34424513 DOI: 10.1007/978-3-030-65943-1_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The African mole-rat family (Bathyergidae) includes the first mammalian species identified as eusocial: naked mole-rats. Comparative studies of eusocial and solitary mole-rat species have identified differences in neuropeptidergic systems that may underlie the phenomenon of eusociality. These differences are found in the oxytocin, vasopressin and corticotrophin-releasing factor (CRF) systems within the nucleus accumbens, amygdala, bed nucleus of the stria terminalis and lateral septal nucleus. As a corollary of their eusociality, most naked mole-rats remain pre-pubertal throughout life because of the presence of the colony's only reproductive female, the queen. To elucidate the neuroendocrine mechanisms that mediate this social regulation of reproduction, research on the hypothalamo-pituitary-gonadal axis in naked mole-rats has identified differences between the many individuals that are reproductively suppressed and the few that are reproductively mature: the queen and her male consorts. These differences involve gonadal steroids, gonadotrophin-releasing hormone-1 (GnRH-1), kisspeptin, gonadotrophin-inhibitory hormone/RFamide-related peptide-3 (GnIH/RFRP-3) and prolactin. The comparative findings in eusocial and solitary mole-rat species are assessed with reference to a broad range of studies on other mammals.
Collapse
Affiliation(s)
- Clive W Coen
- Reproductive Neurobiology, Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada.,Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Christopher G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Li X, Xiao J, Li K, Zhou Y. MiR-199-3p modulates the onset of puberty in rodents probably by regulating the expression of Kiss1 via the p38 MAPK pathway. Mol Cell Endocrinol 2020; 518:110994. [PMID: 32818586 DOI: 10.1016/j.mce.2020.110994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
The Kiss1 gene plays an indispensable role in modulating the onset of puberty and fertility in mammals. Although an increasing number of genetic and environmental factors that influence reproduction through Kiss1 have been identified, the function of microRNAs, a class of posttranscriptional regulators, in regulating Kiss1 expression remains poorly understood. This study aimed at investigating the mechanism by which Kiss1 expression is regulated by microRNAs. A simplified miRNome screen by a dual-fluorescence reporter system based on Kiss1 was performed to identify microRNAs that affect the expression of Kiss1. The expression patterns of the identified microRNAs during the period of murine sexual development were investigated, and only miR-199-3p was studied further. Aided by bioinformatics algorithms, miR-199-3p was demonstrated to be a repressor of Kiss1 expression, as it blocked the expression of Kiss1 through the p38 MAPK pathway by simultaneously inhibiting several targets in both GT1-7 cells and primary hypothalamic neurons. Both the inhibition of the p38 MAPK pathway by the intracerebroventricular administration of chemical agents in rats and the ectopic expression of miR-199-3p by lentivirus injection in the hypothalamus in mice delayed puberty onset and gonad development. Our results presented a novel regulatory mechanism of puberty onset which the sustained downregulation of miR-199-3p might gradually release the inhibition of the p38 MAPK/Fos/CREB/Kiss1 pathway during puberty development.
Collapse
Affiliation(s)
- Xiaoning Li
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China; College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | - Kai Li
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China
| | - Yuxun Zhou
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, China; College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, China.
| |
Collapse
|
9
|
Blasco V, Pinto FM, Fernández-Atucha A, González-Ravina C, Fernández-Sánchez M, Candenas L. Female infertility is associated with an altered expression of the neurokinin B/neurokinin B receptor and kisspeptin/kisspeptin receptor systems in ovarian granulosa and cumulus cells. Fertil Steril 2020; 114:869-878. [PMID: 32811673 DOI: 10.1016/j.fertnstert.2020.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To analyze and compare the expression profile of TAC3, TACR3, KISS1, and KISS1R in mural granulosa and cumulus cells from healthy oocyte donors and patients with different infertility etiologies, including advanced maternal age, endometriosis, and low ovarian response. DESIGN Genetic association study. SETTING Private fertility clinic and public research laboratory. PATIENT(S) Healthy oocyte donors and infertile women undergoing in vitro fertilization (IVF) treatment. INTERVENTION(S) IVF. MAIN OUTCOME MEASURE(S) Gene expression levels of KISS1, KISS1R, TAC3, and TACR3 in human mural granulosa and cumulus cells. RESULT(S) Infertile women showed statistically significantly altered expression levels of KISS1 (-2.57 ± 2.30 vs. -1.37 ± 2.11), TAC3 (-1.21 ± 1.40 vs. -1.49 ± 1.98), and TACR3 (-0.77 ± 1.36 vs. -0.03 ± 0.56) when compared with healthy oocyte donors. Advanced maternal age patients, endometriosis patients, and low responders showed specific and altered expression profiles in comparison with oocyte donors. CONCLUSION(S) Abnormal expression levels of KISS1/KISS1R and TAC3/TACR3 systems in granulosa cells might be involved in the decreased fertility associated to advanced maternal age, endometriosis, and low ovarian response.
Collapse
Affiliation(s)
- Victor Blasco
- Instituto de Investigaciones Químicas, CSIC, Seville, Spain; IVI-RMA Seville, Seville, Spain
| | | | | | | | - Manuel Fernández-Sánchez
- IVI-RMA Seville, Seville, Spain; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; Departamento de Cirugía, Universidad de Sevilla, Seville, Spain; Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Seville, Spain.
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Seville, Spain
| |
Collapse
|
10
|
Bowdridge EC, Abukabda AB, Engles KJ, McBride CR, Batchelor TP, Goldsmith WT, Garner KL, Friend S, Nurkiewicz TR. Maternal Engineered Nanomaterial Inhalation During Gestation Disrupts Vascular Kisspeptin Reactivity. Toxicol Sci 2020; 169:524-533. [PMID: 30843041 DOI: 10.1093/toxsci/kfz064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Maternal engineered nanomaterial (ENM) inhalation is associated with uterine vascular impairments and endocrine disruption that may lead to altered gestational outcomes. We have shown that nano-titanium dioxide (nano-TiO2) inhalation impairs endothelium-dependent uterine arteriolar dilation in pregnant rats. However, the mechanism underlying this dysfunction is unknown. Due to its role as a potent vasoconstrictor and essential reproductive hormone, we examined how kisspeptin is involved in nano-TiO2-induced vascular dysfunction and placental efficiency. Pregnant Sprague Dawley rats were exposed (gestational day [GD] 10) to nano-TiO2 aerosols (cumulative dose = 525 ± 16 μg; n = 8) or sham exposed (n = 6) and sacrificed on GD 20. Plasma was collected to evaluate estrogen (E2), progesterone (P4), prolactin (PRL), corticosterone (CORT), and kisspeptin. Pup and placental weights were measured to calculate placental efficiency (grams fetus/gram placental). Additionally, pressure myography was used to determine uterine artery vascular reactivity. Contractile responses were assessed via cumulative additions of kisspeptin (1 × 10-9 to 1 × 10-4 M). Estrogen was decreased at GD 20 in exposed (11.08 ± 3 pg/ml) versus sham-control rats (66.97 ± 3 pg/ml), whereas there were no differences in P4, PRL, CORT, or kisspeptin. Placental weights were increased in exposed (0.99 ± 0.03 g) versus sham-control rats (0.70 ± 0.04 g), whereas pup weights (4.01 ± 0.47 g vs 4.15 ± 0.15 g) and placental efficiency (4.5 ± 0.2 vs 6.4 ± 0.5) were decreased in exposed rats. Maternal ENM inhalation exposure augmented uterine artery vasoconstrictor responses to kisspeptin (91.2%±2.0 vs 98.6%±0.10). These studies represent initial evidence that pulmonary maternal ENM exposure perturbs the normal gestational endocrine vascular axis via a kisspeptin-dependent mechanism, and decreased placental, which may adversely affect health outcomes.
Collapse
Affiliation(s)
- Elizabeth C Bowdridge
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | - Alaeddin B Abukabda
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | | | - Carroll R McBride
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | - William T Goldsmith
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | - Krista L Garner
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown 26505, West Virginia
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology.,Center for Inhalation Toxicology, Toxicology Working Group, West Virginia University School of Medicine, 26506.,Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown 26505, West Virginia
| |
Collapse
|
11
|
Bohlen TM, Zampieri TT, Furigo IC, Teixeira PDS, List EO, Kopchick JJ, Donato J, Frazao R. Central growth hormone signaling is not required for the timing of puberty. J Endocrinol 2019; 243:JOE-19-0242.R1. [PMID: 31470413 PMCID: PMC6994354 DOI: 10.1530/joe-19-0242] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
Abstract
Growth hormone (GH) is a key factor in the regulation of body growth, as well as a variety of other cellular and metabolic processes. Neurons expressing kisspeptin and leptin receptors (LepR) have been shown to modulate the hypothalamic-pituitary-gonadal (HPG) axis and are considered GH-responsive. The presence of functional GH receptors (GHR) in these neural populations suggests that GH may regulate the HPG axis via a central mechanism. However, there have been no studies evaluating whether or not GH-induced intracellular signaling in the brain plays a role in the timing of puberty or mediates the ovulatory cycle. Towards the goal of understanding the influence of GH on the central nervous system as a mediator of reproductive functions, GHR ablation was induced in kisspeptin and LepR expressing cells or in the entire brain. The results demonstrated that GH signaling in specific neural populations can potentially modulate the hypothalamic expression of genes related to the reproductive system or indirectly contribute to the progression of puberty. GH action in kisspeptin cells or in the entire brain was not required for sexual maturation. On the other hand, GHR ablation in LepR cells delayed puberty progression, reduced serum leptin levels, decreased body weight gain and compromised the ovulatory cycle in some individuals, while the lack of GH effects in the entire brain prompted shorter estrous cycles. These findings suggest that GH can modulate brain components of the HPG axis, although central GH signaling is not required for the timing of puberty.
Collapse
Affiliation(s)
- Tabata M Bohlen
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP – Brazil
| | - Thais T Zampieri
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP – Brazil
| | - Isadora C. Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP – Brazil
| | - Pryscila DS Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP – Brazil
| | - Edward O. List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701 – USA
| | - John J. Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701 – USA
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP – Brazil
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP – Brazil
| |
Collapse
|
12
|
Abstract
Reproduction is fundamental for the survival of all species and requires meticulous synchronisation of a diverse complement of neural, endocrine and related behaviours. The reproductive hormone kisspeptin (encoded by the KISS1/Kiss1 gene) is now a well-established orchestrator of reproductive hormones, acting upstream of gonadotrophin-releasing hormone (GnRH) at the apex of the hypothalamic–pituitary–gonadal (HPG) reproductive axis. Beyond the hypothalamus, kisspeptin is also expressed in limbic and paralimbic brain regions, which are areas of the neurobiological network implicated in sexual and emotional behaviours. We are now forming a more comprehensive appreciation of extra-hypothalamic kisspeptin signalling and the complex role of kisspeptin as an upstream mediator of reproductive behaviours, including olfactory-driven partner preference, copulatory behaviour, audition, mood and emotion. An increasing body of research from zebrafish to humans has implicated kisspeptin in the integration of reproductive hormones with an overall positive influence on these reproductive behaviours. In this review, we critically appraise the current literature regarding kisspeptin and its control of reproductive behaviour. Collectively, these data significantly enhance our understanding of the integration of reproductive hormones and behaviour and provide the foundation for kisspeptin-based therapies to treat related disorders of body and mind.
Collapse
Affiliation(s)
- Edouard G A Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| |
Collapse
|