1
|
Oshimo Y, Munetomo A, Magata F, Suetomi Y, Sonoda S, Takeuchi Y, Tsukamura H, Ohkura S, Matsuda F. Estrogen increases KISS1 expression in newly generated immortalized KISS1-expressing cell line derived from goat preoptic area. J Reprod Dev 2020; 67:15-23. [PMID: 33100283 PMCID: PMC7902218 DOI: 10.1262/jrd.2020-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kisspeptin neurons located in the hypothalamic preoptic area (POA) are suggested to be responsible for the induction of the gonadotropin-releasing hormone
(GnRH) surge and the following luteinizing hormone (LH) surge to regulate female mammals’ ovulation. Accumulating evidence demonstrates that the preovulatory
level of estrogen activates the POA kisspeptin neurons (estrogen positive feedback), which in turn induces a GnRH/LH surge. This study aimed to derive a cell
line from goat POA kisspeptin neurons as an in vitro model to analyze the estrogen positive feedback mechanism in ruminants. Neuron-derived
cell clones obtained by the immortalization of POA tissue from a female Shiba goat fetus were analyzed for the expression of kisspeptin (KISS1)
and estrogen receptor α (ESR1) genes using quantitative real-time reverse transcription-polymerase chain reaction and three cell clones were
selected as POA kisspeptin neuron cell line candidates. One cell line (GP64) out of the three clones showed significant increase in the KISS1
level by incubation with estradiol for 24 h, indicating that the GP64 cells mimic endogenous goat POA kisspeptin neurons. The GP64 cells showed
immunoreactivities for kisspeptin and estrogen receptor α and retained a stable growth rate throughout three passages. Further, intracellular calcium levels in
the GP64 cells were increased by the KCl challenge, indicating their neurosecretory ability. In conclusion, we generated a new KISS1-expressing
cell line derived from goat POA. The current GP64 cell line could be a useful model to elucidate the estrogen positive feedback mechanism responsible for the
GnRH/LH surge generation in ruminants.
Collapse
Affiliation(s)
- Yukina Oshimo
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Arisa Munetomo
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Fumie Magata
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yuta Suetomi
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shuhei Sonoda
- Laboratory of Veterinary Ethology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Fuko Matsuda
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|