1
|
Pausova Z, Sliz E. Large-Scale Population-Based Studies of Blood Metabolome and Brain Health. Curr Top Behav Neurosci 2024. [PMID: 38509405 DOI: 10.1007/7854_2024_463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Metabolomics technologies enable the quantification of multiple metabolomic measures simultaneously, which provides novel insights into molecular aspects of human health and disease. In large-scale, population-based studies, blood is often the preferred biospecimen. Circulating metabolome may relate to brain health either by affecting or reflecting brain metabolism. Peripheral metabolites may act at or cross the blood-brain barrier and, subsequently, influence brain metabolism, or they may reflect brain metabolism if similar pathways are engaged. Peripheral metabolites may also include those penetrating the circulation from the brain, indicating, for example, brain damage. Most brain health-related metabolomics studies have been conducted in the context of neurodegenerative disorders and cognition, but some studies have also focused on neuroimaging markers of these disorders. Moreover, several metabolomics studies of neurodevelopmental disorders have been performed. Here, we provide a brief background on the types of blood metabolites commonly assessed, and we review the literature describing the relationships between human blood metabolome (n > 50 metabolites) and brain health reported in large-scale studies (n > 500 individuals).
Collapse
Affiliation(s)
- Zdenka Pausova
- The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Eeva Sliz
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
2
|
Meng F, Fu J, Zhang L, Guo M, Zhuang P, Yin Q, Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem Int 2023; 169:105591. [PMID: 37543309 DOI: 10.1016/j.neuint.2023.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.
Collapse
Affiliation(s)
- Fanyu Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
3
|
Cui Y, Tang TY, Lu CQ, Ju S. Insulin Resistance and Cognitive Impairment: Evidence From Neuroimaging. J Magn Reson Imaging 2022; 56:1621-1649. [PMID: 35852470 DOI: 10.1002/jmri.28358] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/04/2023] Open
Abstract
Insulin is a peptide well known for its role in regulating glucose metabolism in peripheral tissues. Emerging evidence from human and animal studies indicate the multifactorial role of insulin in the brain, such as neuronal and glial metabolism, glucose regulation, and cognitive processes. Insulin resistance (IR), defined as reduced sensitivity to the action of insulin, has been consistently proposed as an important risk factor for developing neurodegeneration and cognitive impairment. Although the exact mechanism of IR-related cognitive impairment still awaits further elucidation, neuroimaging offers a versatile set of novel contrasts to reveal the subtle cerebral abnormalities in IR. These imaging contrasts, including but not limited to brain volume, white matter (WM) microstructure, neural function and brain metabolism, are expected to unravel the nature of the link between IR, cognitive decline, and brain abnormalities, and their changes over time. This review summarizes the current neuroimaging studies with multiparametric techniques, focusing on the cerebral abnormalities related to IR and therapeutic effects of IR-targeting treatments. According to the results, brain regions associated with IR pathophysiology include the medial temporal lobe, hippocampus, prefrontal lobe, cingulate cortex, precuneus, occipital lobe, and the WM tracts across the globe. Of these, alterations in the temporal lobe are highly reproducible across different imaging modalities. These structures have been known to be vulnerable to Alzheimer's disease (AD) pathology and are critical in cognitive processes such as memory and executive functioning. Comparing to asymptomatic subjects, results are more mixed in patients with metabolic disorders such as type 2 diabetes and obesity, which might be attributed to a multifactorial mechanism. Taken together, neuroimaging, especially MRI, is beneficial to reveal early abnormalities in cerebral structure and function in insulin-resistant brain, providing important evidence to unravel the underlying neuronal substrate that reflects the cognitive decline in IR. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Cui
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chun-Qiang Lu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Woo A, Botta A, Shi SSW, Paus T, Pausova Z. Obesity-Related Neuroinflammation: Magnetic Resonance and Microscopy Imaging of the Brain. Int J Mol Sci 2022; 23:8790. [PMID: 35955925 PMCID: PMC9368789 DOI: 10.3390/ijms23158790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is a major risk factor of Alzheimer's disease and related dementias. The principal feature of dementia is a loss of neurons and brain atrophy. The mechanistic links between obesity and the neurodegenerative processes of dementias are not fully understood, but recent research suggests that obesity-related systemic inflammation and subsequent neuroinflammation may be involved. Adipose tissues release multiple proinflammatory molecules (fatty acids and cytokines) that impact blood and vessel cells, inducing low-grade systemic inflammation that can transition to tissues, including the brain. Inflammation in the brain-neuroinflammation-is one of key elements of the pathobiology of neurodegenerative disorders; it is characterized by the activation of microglia, the resident immune cells in the brain, and by the structural and functional changes of other cells forming the brain parenchyma, including neurons. Such cellular changes have been shown in animal models with direct methods, such as confocal microscopy. In humans, cellular changes are less tangible, as only indirect methods such as magnetic resonance (MR) imaging are usually used. In these studies, obesity and low-grade systemic inflammation have been associated with lower volumes of the cerebral gray matter, cortex, and hippocampus, as well as altered tissue MR properties (suggesting microstructural variations in cellular and molecular composition). How these structural variations in the human brain observed using MR imaging relate to the cellular variations in the animal brain seen with microscopy is not well understood. This review describes the current understanding of neuroinflammation in the context of obesity-induced systemic inflammation, and it highlights need for the bridge between animal microscopy and human MR imaging studies.
Collapse
Affiliation(s)
- Anita Woo
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Amy Botta
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Sammy S. W. Shi
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Tomas Paus
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC H3T 1C5, Canada
- Departments of Psychiatry of Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
- ECOGENE-21, Chicoutimi, QC G7H 7K9, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
- ECOGENE-21, Chicoutimi, QC G7H 7K9, Canada
| |
Collapse
|
5
|
García-García I, Michaud A, Jurado MÁ, Dagher A, Morys F. Mechanisms linking obesity and its metabolic comorbidities with cerebral grey and white matter changes. Rev Endocr Metab Disord 2022; 23:833-843. [PMID: 35059979 DOI: 10.1007/s11154-021-09706-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Obesity is a preventable risk factor for cerebrovascular disorders and it is associated with cerebral grey and white matter changes. Specifically, individuals with obesity show diminished grey matter volume and thickness, which seems to be more prominent among fronto-temporal regions in the brain. At the same time, obesity is associated with lower microstructural white matter integrity, and it has been found to precede increases in white matter hyperintensity load. To date, however, it is unclear whether these findings can be attributed solely to obesity or whether they are a consequence of cardiometabolic complications that often co-exist with obesity, such as low-grade systemic inflammation, hypertension, insulin resistance, or dyslipidemia. In this narrative review we aim to provide a comprehensive overview of the potential impact of obesity and a number of its cardiometabolic consequences on brain integrity, both separately and in synergy with each other. We also identify current gaps in knowledge and outline recommendations for future research.
Collapse
Affiliation(s)
- Isabel García-García
- Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| | | | - María Ángeles Jurado
- Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Alain Dagher
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Filip Morys
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
6
|
Ghosh-Swaby OR, Reichelt AC, Sheppard PAS, Davies J, Bussey TJ, Saksida LM. Metabolic hormones mediate cognition. Front Neuroendocrinol 2022; 66:101009. [PMID: 35679900 DOI: 10.1016/j.yfrne.2022.101009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Recent biochemical and behavioural evidence indicates that metabolic hormones not only regulate energy intake and nutrient content, but also modulate plasticity and cognition in the central nervous system. Disruptions in metabolic hormone signalling may provide a link between metabolic syndromes like obesity and diabetes, and cognitive impairment. For example, altered metabolic homeostasis in obesity is a strong determinant of the severity of age-related cognitive decline and neurodegenerative disease. Here we review the evidence that eating behaviours and metabolic hormones-particularly ghrelin, leptin, and insulin-are key players in the delicate regulation of neural plasticity and cognition. Caloric restriction and antidiabetic therapies, both of which affect metabolic hormone levels can restore metabolic homeostasis and enhance cognitive function. Thus, metabolic hormone pathways provide a promising target for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Olivia R Ghosh-Swaby
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada
| | - Amy C Reichelt
- Faculty of Health and Medical Sciences, Adelaide Medical School, Adelaide, Australia
| | - Paul A S Sheppard
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Jeffrey Davies
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Timothy J Bussey
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Lisa M Saksida
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada.
| |
Collapse
|
7
|
Iceta S, Dadar M, Daoust J, Scovronec A, Leblanc V, Pelletier M, Biertho L, Tchernof A, Bégin C, Michaud A. Association between Visceral Adiposity Index, Binge Eating Behavior, and Grey Matter Density in Caudal Anterior Cingulate Cortex in Severe Obesity. Brain Sci 2021; 11:brainsci11091158. [PMID: 34573180 PMCID: PMC8468041 DOI: 10.3390/brainsci11091158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023] Open
Abstract
Visceral adipose tissue accumulation is an important determinant of metabolic risk and can be estimated by the visceral adiposity index (VAI). Visceral adiposity may impact brain regions involved in eating behavior. We aimed to examine the association between adiposity measurements, binge eating behavior, and grey matter density. In 20 men and 59 women with severe obesity, Grey matter density was measured by voxel-based morphometry for six regions of interest associated with reward, emotion, or self-regulation: insula, orbitofrontal cortex, caudal and rostral anterior cingulate cortex (ACC), ventromedial prefrontal cortex (vmPFC), and dorsolateral prefrontal cortex (DLPFC). Binge eating behavior, depression and impulsivity was assessed by the Binge Eating Scale, Beck Depression Inventory and UPPS Impulsive Behavior Scale, respectively. Men and women were distinctively divided into two subgroups (low-VAI and high-VAI) based on the mean VAI score. Women with high-VAI were characterized by metabolic alterations, higher binge eating score and lower grey matter density in the caudal ACC compared to women with low-VAI. Men with high-VAI were characterized by a higher score for the sensation-seeking subscale of the UPPS–Impulsive Behavior Scale compared to men with low-VAI. Using a moderation–mediation analysis, we found that grey matter density in the caudal ACC mediates the association between VAI and binge eating score. In conclusion, visceral adiposity is associated with higher binge eating severity in women. Decreased grey matter density in the caudal ACC, a region involved in cognition and emotion regulation, may influence this relationship.
Collapse
Affiliation(s)
- Sylvain Iceta
- Research Center of the Quebec Heart and Lung Institute, Université Laval, Quebec City, QC G1V 4G5, Canada; (J.D.); (A.S.); (M.P.); (A.T.); (C.B.)
- School of Nutrition, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence: (S.I.); (A.M.)
| | - Mahsa Dadar
- CERVO Brain Research Center, Centre Intégré Universitaire Santé et Services Sociaux de la Capitale Nationale, Université Laval, Quebec City, QC G1E 1T2, Canada;
| | - Justine Daoust
- Research Center of the Quebec Heart and Lung Institute, Université Laval, Quebec City, QC G1V 4G5, Canada; (J.D.); (A.S.); (M.P.); (A.T.); (C.B.)
- School of Nutrition, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Anais Scovronec
- Research Center of the Quebec Heart and Lung Institute, Université Laval, Quebec City, QC G1V 4G5, Canada; (J.D.); (A.S.); (M.P.); (A.T.); (C.B.)
- School of Nutrition, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Vicky Leblanc
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Melissa Pelletier
- Research Center of the Quebec Heart and Lung Institute, Université Laval, Quebec City, QC G1V 4G5, Canada; (J.D.); (A.S.); (M.P.); (A.T.); (C.B.)
| | - Laurent Biertho
- Département de Chirurgie Générale, Quebec Heart and Lung Institute, Université Laval, Quebec City, QC G1V 4G5, Canada;
| | - André Tchernof
- Research Center of the Quebec Heart and Lung Institute, Université Laval, Quebec City, QC G1V 4G5, Canada; (J.D.); (A.S.); (M.P.); (A.T.); (C.B.)
- School of Nutrition, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Catherine Bégin
- Research Center of the Quebec Heart and Lung Institute, Université Laval, Quebec City, QC G1V 4G5, Canada; (J.D.); (A.S.); (M.P.); (A.T.); (C.B.)
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada;
- School of Psychology, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Andreanne Michaud
- Research Center of the Quebec Heart and Lung Institute, Université Laval, Quebec City, QC G1V 4G5, Canada; (J.D.); (A.S.); (M.P.); (A.T.); (C.B.)
- School of Nutrition, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada;
- Correspondence: (S.I.); (A.M.)
| |
Collapse
|
8
|
Lu R, Aziz NA, Diers K, Stöcker T, Reuter M, Breteler MMB. Insulin resistance accounts for metabolic syndrome-related alterations in brain structure. Hum Brain Mapp 2021; 42:2434-2444. [PMID: 33769661 PMCID: PMC8090787 DOI: 10.1002/hbm.25377] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolic syndrome (MetS) is a major public health burden worldwide and associated with brain abnormalities. Although insulin resistance is considered a pivotal feature of MetS, its role in the pathogenesis of MetS‐related brain alterations in the general population is unclear. Therefore, in 973 participants (mean age 52.5 years) of the population‐based Rhineland Study, we assessed brain morphology in relation to MetS and insulin resistance, and evaluated to what extent the pattern of structural brain changes seen in MetS overlap with those associated with insulin resistance. Cortical reconstruction and volumetric segmentation were obtained from high‐resolution brain images at 3 Tesla using FreeSurfer. The relations between metabolic measures and brain structure were assessed through (generalized) linear models. Both MetS and insulin resistance were associated with smaller cortical gray matter volume and thickness, but not with white matter or subcortical gray matter volume. Age‐ and sex‐adjusted vertex‐based brain morphometry demonstrated that MetS and insulin resistance were related to cortical thinning in a similar spatial pattern. Importantly, no independent effect of MetS on cortical gray matter was observed beyond the effect of insulin resistance. Our findings suggest that addressing insulin resistance is critical in the prevention of MetS‐related brain changes in later life.
Collapse
Affiliation(s)
- Ran Lu
- Population Health Sciences, German Center for Neurodegenerative diseases (DZNE), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative diseases (DZNE), Bonn, Germany.,Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Kersten Diers
- Image Analysis, German Center for Neurodegenerative diseases (DZNE), Bonn, Germany
| | - Tony Stöcker
- MR Physics, German Center for Neurodegenerative diseases (DZNE), Bonn, Germany.,Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| | - Martin Reuter
- Image Analysis, German Center for Neurodegenerative diseases (DZNE), Bonn, Germany.,A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative diseases (DZNE), Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Preissl H, Small D, Kullmann S. Neuroendocrinology and brain imaging. J Neuroendocrinol 2020; 32:e12927. [PMID: 33373090 DOI: 10.1111/jne.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Dana Small
- Modern Diet and Physiology Research Center, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| |
Collapse
|