1
|
Ahmed M, Campbell SA. Modelling the effect of allopregnanolone on the resolution of spike-wave discharges. J Comput Neurosci 2024:10.1007/s10827-024-00887-x. [PMID: 39708102 DOI: 10.1007/s10827-024-00887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Childhood absence epilepsy (CAE) is a paediatric generalized epilepsy disorder with a confounding feature of resolving in adolescence in a majority of cases. In this study, we modelled how the small-scale (synapse-level) effect of progesterone metabolite allopregnanolone induces a large-scale (network-level) effect on a thalamocortical circuit associated with this disorder. In particular, our goal was to understand the role of sex steroid hormones in the spontaneous remission of CAE. The conductance-based computational model consisted of single-compartment cortical pyramidal, cortical interneurons, thalamic reticular and thalamocortical relay neurons, each described by a set of ordinary differential equations. Excitatory and inhibitory synapses were mediated by AMPA, GABAa and GABAb receptors. The model was implemented using the NetPyne modelling tool and the NEURON simulator. It was found that the action of allopregnanolone (ALLO) on individual GABAa-receptor mediated synapses can have an ameliorating effect on spike-wave discharges (SWDs) associated with absence seizures. This effect is region-specific and most significant in the thalamus, particularly the synapses between thalamic reticular neurons. The remedying effect of allopregnanolone on SWDs may possibly be true only for individuals that are predisposed to remission due to intrinsic connectivity differences or differences in tonic inhibition. These results are a useful first-step and prescribe directions for further investigation into the role of ALLO together with these differences to distinguish between models for CAE-remitting and non-remitting individuals.
Collapse
Affiliation(s)
- Maliha Ahmed
- Department of Applied Mathematics, and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue W, Waterloo, N2L 3G1, ON, Canada.
| | - Sue Ann Campbell
- Department of Applied Mathematics, and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue W, Waterloo, N2L 3G1, ON, Canada
| |
Collapse
|
2
|
Pérez-Osorio IN, Espinosa-Cerón JA, Álvarez-Gutiérrez C, Gonzalez-Flores R, Besedovsky H, Fragoso G, Torres-Ramos MA, Sciutto E. Combined Use of Intranasal Methylprednisolone and Allopregnanolone: Revisiting Anti-inflammatory and Remyelinating Treatment in a Murine Model of Multiple Sclerosis. FRONT BIOSCI-LANDMRK 2024; 29:420. [PMID: 39735995 DOI: 10.31083/j.fbl2912420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelinating, neuroinflammatory, progressive disease that severely affects human health of young adults. Neuroinflammation (NI) and demyelination, as well as their interactions, are key therapeutic targets to halt or slow disease progression. Potent steroidal anti-inflammatory drugs such as methylprednisolone (MP) and remyelinating neurosteroids such as allopregnanolone (ALLO) could be co-administered intranasally to enhance their efficacy by providing direct access to the central nervous system (CNS). METHODS The individual and combined effects of MP and ALLO to control the clinical score of murine experimental autoimmune encephalitis (EAE), to preserve spinal cord tissue integrity, modulate cellular infiltration and gliosis, promote remyelination, and modify the expression of Aryl hydrocarbon receptor (AhR) were evaluated. In silico studies, to deep insight into the mechanisms involved for the treatments, were also conducted. RESULTS MP was the only treatment that significantly reduced the EAE severity, infiltration of inflammatory cells and ionized calcium-binding adapter molecule 1 (Iba-1) expression respect to those EAE non-treated mice but with no-significant differences between the three treatments. MP, ALLO and MP+ALLO significantly reduced tissue damage, AhR expression, and promoted remyelination. Overall, these results suggest that MP, with or without the co-administration with ALLO is an effective and safe strategy to reduce the inflammatory status and the progression of EAE. Despite the expectations of the use of ALLO to reduce the inflammation in EAE, its effect in the dose-scheme used herein is limited only to improve myelination, an effect that supports its usefulness in demyelinating diseases. These results indicate the interest in exploring different doses of ALLO to recommend its use. CONCLUSIONS ALLO treatment mainly maintain the integrity of the spinal cord tissue and the presence of myelin without affecting NI and the clinical outcome. AhR could be involved in the effect observed in both, MP and ALLO treatments. These results will help in the development of a more efficient therapy for MS patients.
Collapse
Affiliation(s)
- Iván Nicolás Pérez-Osorio
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| | - José Alejandro Espinosa-Cerón
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| | - Camila Álvarez-Gutiérrez
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| | - Rodrigo Gonzalez-Flores
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| | - Hugo Besedovsky
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, 35037 Marburg, Germany
| | - Gladis Fragoso
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| | - Mónica A Torres-Ramos
- Research Directorate, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Tlalpan, 14269 Mexico City, Mexico
- Laboratory 4 Translational Sciences, Center for Research on Aging, CINVESTAV South Headquarters, 14330, Mexico City, Mexico
| | - Edda Sciutto
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| |
Collapse
|
3
|
Angeloni E, Germelli L, Costa B, Martini C, Da Pozzo E. Neurosteroids and Translocator Protein (TSPO) in neuroinflammation. Neurochem Int 2024; 182:105916. [PMID: 39681140 DOI: 10.1016/j.neuint.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Neurosteroids have a crucial role in physiological intrinsic regulations of the Central Nervous System functions. They are derived from peripheral steroidogenic sources and from the de novo neurosteroidogenic capacity of brain cells. Significant alterations of neurosteroid levels have been frequently observed in neuroinflammation and neurodegenerative diseases. Such level fluctuations may be useful for both diagnosis and treatment of these pathological conditions. Beyond steroid administration, enhancing the endogenous production by Translocator Protein (TSPO) targeting has been proposed to restore these altered pathological levels. However, the neurosteroid quantification and the prediction of their final effects are often troublesome, sometimes controversial and context dependent, due to the complexity of neurosteroid biosynthetic pathway and to the low produced amounts. The aim of this review is to report recent advances, and technical limitations, in neurosteroid-related strategies against neuroinflammation.
Collapse
Affiliation(s)
- Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| |
Collapse
|
4
|
Hirst JJ, Palliser HK, Pavy C, Shaw JC, Moloney RA. Neurosteroid replacement approaches for improving outcomes after compromised pregnancies and preterm birth. Front Neuroendocrinol 2024; 76:101169. [PMID: 39622477 DOI: 10.1016/j.yfrne.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
The levels of the key neurosteroid of pregnancy, allopregnanolone, are very high in the fetal and maternal brain compared to after birth. These levels are maintained by the placenta which forms a placental connection to fetal brain development. Maternal stresses depress placental synthesis resulting in a fall in allopregnanolone levels leading to deficits in myelination that continue into childhood. This contributes to an increased incidence of behavioural disorders. Supplementing neurosteroid action with allopregnanolone analogues or raising endogenous production with mitochondrial translocator protein (TSPO) ligands reverses these deficits. Preterm birth leads to an early dramatic loss of neurosteroid support for brain development leading to marked deficits in myelination and susceptibility to hypoxic-ischaemic injury. Postnatal treatment with the allopregnanolone analogue ganaxolone improves myelination and reduces hyperactive behaviour. TSPO ligands such as emapunil have been shown to improve oligodendrocyte maturation. These findings support the use of allopregnanolone supplementation approaches after pregnancy compromises to improve outcome.
Collapse
Affiliation(s)
- Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, Mothers and Babies Research Program, Newcastle, Australia
| | - Carlton Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, Mothers and Babies Research Program, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, Mothers and Babies Research Program, Newcastle, Australia
| | - Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, Mothers and Babies Research Program, Newcastle, Australia
| |
Collapse
|
5
|
Higashi T, Tanaka A, Tsubura S, Nishimoto-Kusunose S. Conversion of 5α-Androstane-3α,17β-diol to bis[(4-dimethylamino)phenyl carbamate] derivative for sensitive determination of its rat brain level by LC/ESI-MS/MS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9875. [PMID: 39049483 DOI: 10.1002/rcm.9875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
RATIONALE 5α-Androstane-3α,17β-diol (3α,5α-Adiol) is a testosterone-derived neurosteroid and has anxiolytic and analgesic effects via γ-aminobutyric acid type A receptors as with the progesterone-derived neurosteroid, allopregnanolone (AP). Although the psychotropic drug-evoked changes in the brain AP concentration have been intensively studied, those in the brain 3α,5α-Adiol concentration remain poorly understood. One of the causes for this is the limited availability of a validated method for quantifying the brain 3α,5α-Adiol with a sufficient sensitivity and specificity, which is described in this study. METHODS To enhance the detectability of 3α,5α-Adiol by electrospray ionization-tandem mass spectrometry (ESI-MS/MS), derivatization with 4-dimethylaminobenzoyl azide was employed. The brain sample was purified by solid-phase extraction and the recovered 3α,5α-Adiol and the deuterated internal standard were derivatized, then measured by liquid chromatography (LC)/ESI-MS/MS with selected reaction monitoring. RESULTS The derivatized 3α,5α-Adiol, i.e., the bis[(4-dimethylamino)phenyl carbamate] derivative, provided the intense doubly-protonated molecule as the precursor ion, then the specific product ion containing the 3α,5α-Adiol-skeleton by collision-induced dissociation. The detectability of 3α,5α-Adiol was eventually increased 1000-fold by derivatization. Separation of the derivatized 3α,5α-Adiol from its stereoisomers and interfering brain components was achieved using a SunShell Biphenyl column with an isopropyl alcohol-containing mobile phase. A good linearity in the sufficient concentration range, acceptable precision and accuracy, and negligible matrix effect were demonstrated by the validation tests. The animal (rat) study using this method revealed that the brain 3α,5α-Adiol levels were unaffected by the administration of fluoxetine (FLX) and clozapine (CLZ), in contrast to the significant increase of the AP levels. CONCLUSION An LC/ESI-MS/MS method capable of quantifying 3α,5α-Adiol in the rat brain using a 20-mg tissue was developed and validated. The brain levels of 3α,5α-Adiol had an entirely different behavior from those of AP due to FLX and CLZ administration.
Collapse
Affiliation(s)
- Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | - Asuka Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | - Shiho Tsubura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Japan
| | | |
Collapse
|
6
|
Thörnblom E, Cunningham JL, Gingnell M, Landén M, Bergquist J, Bodén R. Allopregnanolone and progesterone in relation to a single electroconvulsive therapy seizure and subsequent clinical outcome: an observational cohort study. BMC Psychiatry 2024; 24:687. [PMID: 39407178 PMCID: PMC11476534 DOI: 10.1186/s12888-024-06167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is an important treatment for several severe psychiatric conditions, yet its precise mechanism of action remains unknown. Increased inhibition in the brain after ECT seizures, mediated by γ-aminobutyric acid (GABA), has been linked to clinical effectiveness. Case series on epileptic patients report a postictal serum concentration increase of the GABAA receptor agonist allopregnanolone. Serum allopregnanolone remains unchanged after a full ECT series, but possible transient effects directly after a single ECT seizure remain unexplored. The primary aim was to measure serum concentrations of allopregnanolone and its substrate progesterone after one ECT seizure. Secondary aims were to examine whether concentrations at baseline, or postictal changes, either correlate with seizure generalization or predict clinical outcome ratings after ECT. METHODS A total of 130 participants (18-85 years) were included. Generalization parameters comprised peak ictal heart rate, electroencephalographic (EEG) seizure duration, and prolactin increase. Outcome measures were ratings of clinical global improvement, perceived health status and subjective memory impairment. Non-parametric tests were used for group comparisons and correlations. The prediction analyses were conducted with binary logistic and simple linear regression analyses. RESULTS Allopregnanolone and progesterone remained unchanged and correlated neither with seizure generalization nor with clinical outcome. In men (n = 50), progesterone increased and allopregnanolone change correlated negatively with EEG seizure duration. In a subgroup analysis (n = 62), higher baseline allopregnanolone and progesterone correlated with postictal EEG suppression. CONCLUSIONS ECT seizures have different physiologic effects than generalized seizures in epilepsy. Progesterone might have implications for psychiatric illness in men.
Collapse
Affiliation(s)
- Elin Thörnblom
- Department of Medical Sciences, Uppsala University, Entrance 10, Uppsala, 751 85, Sweden.
| | - Janet L Cunningham
- Department of Medical Sciences, Uppsala University, Entrance 10, Uppsala, 751 85, Sweden
| | - Malin Gingnell
- Department of Medical Sciences, Uppsala University, Entrance 10, Uppsala, 751 85, Sweden
| | - Mikael Landén
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Robert Bodén
- Department of Medical Sciences, Uppsala University, Entrance 10, Uppsala, 751 85, Sweden
| |
Collapse
|
7
|
Gonda X, Tarazi FI, Dome P. The emergence of antidepressant drugs targeting GABA A receptors: A concise review. Biochem Pharmacol 2024; 228:116481. [PMID: 39147329 DOI: 10.1016/j.bcp.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Depression is among the most common psychiatric illnesses, which imposes a major socioeconomic burden on patients, caregivers, and the public health system. Treatment with classical antidepressants (e.g. tricyclic antidepressants and selective serotonine reuptake inhibitors), which primarily affect monoaminergic systems has several limitations, such as delayed onset of action and moderate efficacy in a relatively large proportion of depressed patients. Furthermore, depression is highly heterogeneus, and its different subtypes, including post-partum depression, involve distinct neurobiology, warranting a differential approach to pharmacotherapy. Given these shortcomings, the need for novel antidepressants that are superior in efficacy and faster in onset of action is fully justified. The development and market introduction of rapid-acting antidepressants has accelerated in recent years. Some of these new antidepressants act through the GABAergic system. In this review, we discuss the discovery, efficacy, and limitations of treatment with classic antidepressants. We provide a detailed discussion of GABAergic neurotransmission, with a special focus on GABAA receptors, and possible explanations for the mood-enhancing effects of GABAergic medications (in particular neurosteroids acting at GABAA receptors), and, ultimately, we present the most promising molecules belonging to this family which are currently used in clinical practice or are in late phases of clinical development.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| | - Frank I Tarazi
- Department of Psychiatry and Neurology, Harvard Medical School and McLean Hospital, Boston, MA, USA
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Nyiro Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary
| |
Collapse
|
8
|
Tonon AC, Ramos-Lima LF, Kuhathasan N, Frey BN. Early Life Trauma, Emotion Dysregulation and Hormonal Sensitivity Across Female Reproductive Life Events. Curr Psychiatry Rep 2024; 26:530-542. [PMID: 39187611 DOI: 10.1007/s11920-024-01527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE OF REVIEW To explore the relationship between early life trauma, hormonal sensitivity, and psychiatric disorders across female-reproductive life events, with a focus on the neurobiological mechanisms. RECENT FINDINGS Childhood trauma significantly increases the risk of subsequent mood disorders during periods of intense hormonal fluctuation such as premenstrual, pregnancy, postpartum, and perimenopause. Neurobiological changes resulting from early trauma influence emotion regulation, which emerges as a key predisposing, exacerbating, and perpetuating factor to hormonal sensitivity and subsequent psychiatric symptoms. We identified altered stress response and allopregnanolone imbalance, bias in cognitive processing of emotions, neuroimage correlates and sleep disturbances as potential underlying neurobiological mechanisms. This review integrates cumulative findings supporting a theoretical framework linking early life trauma to hormonal sensitivity and mood disorders. We propose that some women might be more susceptible to such hormonal fluctuations because of emotion dysregulation following significant early life trauma.
Collapse
Affiliation(s)
- André C Tonon
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, 100 West 5th Street, Hamilton, ON, L8N 3K7, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th Street, Hamilton, ON, L8N 3K7, Canada
| | - Luis Francisco Ramos-Lima
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, 100 West 5th Street, Hamilton, ON, L8N 3K7, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th Street, Hamilton, ON, L8N 3K7, Canada
| | - Nirushi Kuhathasan
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, 100 West 5th Street, Hamilton, ON, L8N 3K7, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th Street, Hamilton, ON, L8N 3K7, Canada
| | - Benicio N Frey
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, 100 West 5th Street, Hamilton, ON, L8N 3K7, Canada.
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th Street, Hamilton, ON, L8N 3K7, Canada.
| |
Collapse
|
9
|
Melcangi RC. Role of Neuroactive Steroids in Health and Disease. Biomolecules 2024; 14:941. [PMID: 39199329 PMCID: PMC11352212 DOI: 10.3390/biom14080941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Steroidogenesis occurs not only in endocrine peripheral glands (i [...].
Collapse
Affiliation(s)
- Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
10
|
Jin L, Yang K, Wu X, Zhang J. Safety assessment of brexanolone in the FAERS database: real adverse event analysis and discussion of side effects. Expert Opin Drug Saf 2024:1-7. [PMID: 39093352 DOI: 10.1080/14740338.2024.2387316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Postpartum depression (PPD) is linked to hormonal changes. Brexanolone, the first FDA-approved drug for PPD, is a potential treatment. This study analyzes Brexanolone's safety using the FAERS database, highlighting its adverse effects and potential risk factors. METHODS We analyzed FAERS data from Q3 2019 to Q3 2023, evaluating adverse reactions to Brexanolone. The analysis includes demographics, reporting regions, reporter identities, and types of adverse reactions. RESULTS Most reports are from the United States, with consumers and physicians as primary reporters. Adverse reactions mainly involve severe systemic diseases, administration site reactions, injuries, intoxication, operational complications, and mental disorders. Specific adverse reactions include incorrect drug monitoring, PPD, intrusive thoughts, delayed treatment efficacy, sedation complications, product discontinuation, misuse, infusion site leakage and pain, and medication errors. CONCLUSION The study confirms known safety information about Brexanolone and provides comprehensive data for medical practices and public health decisions. However, relying on spontaneous reports may introduce biases and incomplete information. Continued monitoring and reporting of adverse reactions to newer drugs like Brexanolone remain crucial.
Collapse
Affiliation(s)
- Liuyin Jin
- Department of Science and Education, Lishui Second People's Hospital, Lishui, China
| | - Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Jing Zhang
- Second Department of Infectious Disease, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Stanczyk FZ, McGough A, Chagam L, Sitruk-Ware R. Metabolism of progestogens used for contraception and menopausal hormone therapy. Steroids 2024; 207:109427. [PMID: 38663566 DOI: 10.1016/j.steroids.2024.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
A variety of progestogens are widely used by women for contraception and menopausal hormone therapy. The progestogens undergo extensive metabolism by oral and parenteral routes of administration to form many metabolites. Although a small number of metabolites have been shown to be biologically active, most have not been tested for biologic activity. The present review shows that we know most about progesterone metabolism, followed by the metabolism of levonorgestrel and norethindrone. Very few studies have been carried out on metabolism of most of the progestogens. The clinical significance of this deficiency is that those progestogen metabolites that bind to the progesterone receptors may also bind to other steroid receptors and be responsible for some of the well-documented side effects of administered progestogens. We also discuss how obesity and genetic polymorphisms alter progestogen metabolism, and how development of oral progestogen formulations that are targeted to the colon, where the concentration of steroid-metabolizing enzymes is much lower than in the proximal gut, may have a beneficial effect on progestogen metabolism.
Collapse
Affiliation(s)
- Frank Z Stanczyk
- Department of Obstetrics & Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA.
| | - Alexandra McGough
- Department of Obstetrics & Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Laura Chagam
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | | |
Collapse
|
12
|
Męczekalski B, Niwczyk O, Battipaglia C, Troia L, Kostrzak A, Bala G, Maciejewska-Jeske M, Genazzani AD, Luisi S. Neuroendocrine disturbances in women with functional hypothalamic amenorrhea: an update and future directions. Endocrine 2024; 84:769-785. [PMID: 38062345 PMCID: PMC11208264 DOI: 10.1007/s12020-023-03619-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024]
Abstract
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of both primary and secondary amenorrhea in women of reproductive age. It is characterized by chronic anovulation and the absence of menses that appear as a result of stressors such as eating disorders, excessive exercise, or psychological distress. FHA is presumed to be a functional disruption in the pulsatile secretion of hypothalamic gonadotropin-releasing hormone, which in turn impairs the release of gonadotropin. Hypoestrogenism is observed due to the absence of ovarian follicle recruitment. Numerous neurotransmitters have been identified which play an important role in the regulation of the hypothalamic-pituitary-ovarian axis and of which the impairment would contribute to developing FHA. In this review we summarize the most recent advances in the identification of contributing neuroendocrine disturbances and relevant contributors to the development of FHA.
Collapse
Affiliation(s)
- Błażej Męczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Olga Niwczyk
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Christian Battipaglia
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Libera Troia
- Department of Gynecology and Obstetrics, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Gregory Bala
- UCD School of Medicine University College Dublin, D04 V1W8, Dublin, Ireland
| | | | - Alessandro D Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Luisi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
13
|
Bäckström T, Doverskog M, Blackburn TP, Scharschmidt BF, Felipo V. Allopregnanolone and its antagonist modulate neuroinflammation and neurological impairment. Neurosci Biobehav Rev 2024; 161:105668. [PMID: 38608826 DOI: 10.1016/j.neubiorev.2024.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/18/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Neuroinflammation accompanies several brain disorders, either as a secondary consequence or as a primary cause and may contribute importantly to disease pathogenesis. Neurosteroids which act as Positive Steroid Allosteric GABA-A receptor Modulators (Steroid-PAM) appear to modulate neuroinflammation and their levels in the brain may vary because of increased or decreased local production or import from the systemic circulation. The increased synthesis of steroid-PAMs is possibly due to increased expression of the mitochondrial cholesterol transporting protein (TSPO) in neuroinflammatory tissue, and reduced production may be due to changes in the enzymatic activity. Microglia and astrocytes play an important role in neuroinflammation, and their production of inflammatory mediators can be both activated and inhibited by steroid-PAMs and GABA. What is surprising is the finding that both allopregnanolone, a steroid-PAM, and golexanolone, a novel GABA-A receptor modulating steroid antagonist (GAMSA), can inhibit microglia and astrocyte activation and normalize their function. This review focuses on the role of steroid-PAMs in neuroinflammation and their importance in new therapeutic approaches to CNS and liver disease.
Collapse
Affiliation(s)
| | | | | | | | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
14
|
Sakaguchi K, Tawata S. Giftedness and atypical sexual differentiation: enhanced perceptual functioning through estrogen deficiency instead of androgen excess. Front Endocrinol (Lausanne) 2024; 15:1343759. [PMID: 38752176 PMCID: PMC11094242 DOI: 10.3389/fendo.2024.1343759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Syndromic autism spectrum conditions (ASC), such as Klinefelter syndrome, also manifest hypogonadism. Compared to the popular Extreme Male Brain theory, the Enhanced Perceptual Functioning model explains the connection between ASC, savant traits, and giftedness more seamlessly, and their co-emergence with atypical sexual differentiation. Overexcitability of primary sensory inputs generates a relative enhancement of local to global processing of stimuli, hindering the abstraction of communication signals, in contrast to the extraordinary local information processing skills in some individuals. Weaker inhibitory function through gamma-aminobutyric acid type A (GABAA) receptors and the atypicality of synapse formation lead to this difference, and the formation of unique neural circuits that process external information. Additionally, deficiency in monitoring inner sensory information leads to alexithymia (inability to distinguish one's own emotions), which can be caused by hypoactivity of estrogen and oxytocin in the interoceptive neural circuits, comprising the anterior insular and cingulate gyri. These areas are also part of the Salience Network, which switches between the Central Executive Network for external tasks and the Default Mode Network for self-referential mind wandering. Exploring the possibility that estrogen deficiency since early development interrupts GABA shift, causing sensory processing atypicality, it helps to evaluate the co-occurrence of ASC with attention deficit hyperactivity disorder, dyslexia, and schizophrenia based on phenotypic and physiological bases. It also provides clues for understanding the common underpinnings of these neurodevelopmental disorders and gifted populations.
Collapse
Affiliation(s)
- Kikue Sakaguchi
- Research Department, National Institution for Academic Degrees and Quality Enhancement of Higher Education (NIAD-QE), Kodaira-shi, Tokyo, Japan
| | - Shintaro Tawata
- Graduate School of Human Sciences, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
15
|
McFarland MH, Machado MMF, Sansbury GM, Musselman KC, Boero G, O'Buckley TK, Carr CC, Morrow AL, Robinson DL. Acute, but not repeated, cocaine exposure alters allopregnanolone levels in the midbrain of male and female rats. Psychopharmacology (Berl) 2024; 241:1011-1025. [PMID: 38282126 PMCID: PMC11180476 DOI: 10.1007/s00213-024-06534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
RATIONALE Multiple psychiatric disorders are associated with altered brain and serum levels of neuroactive steroids, including the endogenous GABAergic steroid, allopregnanolone. Clinically, chronic cocaine use was correlated with decreased levels of pregnenolone. Preclinically, the effect of acute cocaine on allopregnanolone levels in rodents has had mixed results, showing an increase or no change in allopregnanolone levels in some brain regions. OBJECTIVE We hypothesized that cocaine acutely increases allopregnanolone levels, but repeated cocaine exposure decreases allopregnanolone levels compared to controls. METHODS We performed two separate studies to determine how systemic administration of 15 mg/kg cocaine (1) acutely or (2) chronically alters brain (olfactory bulb, frontal cortex, dorsal striatum, and midbrain) and serum allopregnanolone levels in adult male and female Sprague-Dawley rats. RESULTS Cocaine acutely increased allopregnanolone levels in the midbrain, but not in olfactory bulb, frontal cortex, or dorsal striatum. Repeated cocaine did not persistently (24 h later) alter allopregnanolone levels in any region in either sex. However, allopregnanolone levels varied by sex across brain regions. In the acute study, we found that females had significantly higher allopregnanolone levels in serum and olfactory bulb relative to males. In the repeated cocaine study, females had significantly higher allopregnanolone levels in olfactory bulb, frontal cortex, and serum. Finally, acute cocaine increased allopregnanolone levels in the frontal cortex of females in proestrus, relative to non-proestrus stages. CONCLUSION Collectively these results suggest that allopregnanolone levels vary across brain regions and by sex, which may play a part in differential responses to cocaine by sex.
Collapse
Affiliation(s)
- Minna H McFarland
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Meira M F Machado
- Robarts Research Institute, Western University, London, ON, N6A 5B7, Canada
| | - Griffin M Sansbury
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kate C Musselman
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Giorgia Boero
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Crystal C Carr
- Department of Psychology, Wofford College, Spartanburg, SC, 29303, USA
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Evans-Strong A, Walton N, Blandino K, Roper ATC, Donaldson ST, Lewis M, Maguire J. Witnessed trauma exposure induces fear in mice through a reduction in endogenous neurosteroid synthesis. J Neuroendocrinol 2024; 36:e13378. [PMID: 38482748 PMCID: PMC11091913 DOI: 10.1111/jne.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024]
Abstract
Neurosteroids have been implicated in the pathophysiology of post-traumatic stress disorder (PTSD). Allopregnanolone is reduced in subsets of individuals with PTSD and has been explored as a novel treatment strategy. Both direct trauma exposure and witnessed trauma are risk factors for PTSD; however, the role of neurosteroids in the behavioral outcomes of these unique experiences has not been explored. Here, we investigate whether observational fear is associated with a reduced capacity for endogenous neurosteroidogenesis and the relationship with behavioral outcomes. We demonstrated that mice directly subjected to a threat (foot shocks) and those witnessing the threat have decreased plasma levels of allopregnanolone. The expression of a key enzyme involved in endogenous neurosteroid synthesis, 5α-reductase type 2, is decreased in the basolateral amygdala, which is a major emotional processing hub implicated in PTSD. We demonstrated that genetic knockdown or pharmacological inhibition of 5α-reductase type 2 exaggerates the behavioral expression of fear in response to witnessed trauma, whereas oral treatment with an exogenous, synthetic neuroactive steroid gamma-aminobutyric acid-A receptor positive allosteric modulator with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound]) decreased the behavioral response to observational fear. These data implicate impaired endogenous neurosteroidogenesis in the pathophysiology of threat exposure, both direct and witnessed. Further, these data suggest that treatment with exogenous 5α-reduced neurosteroids or targeting endogenous neurosteroidogenesis may be beneficial for the treatment of individuals with PTSD, whether resulting from direct or witnessed trauma.
Collapse
Affiliation(s)
- Aidan Evans-Strong
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Najah Walton
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Katrina Blandino
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Abigail T C Roper
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - S Tiffany Donaldson
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Mike Lewis
- Sage Therapeutics, Inc, Cambridge, Massachusetts, USA
| | - Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Gray SL, Lam EK, Henao-Diaz LF, Jalabert C, Soma KK. Effect of a Territorial Challenge on the Steroid Profile of a Juvenile Songbird. Neuroscience 2024; 541:118-132. [PMID: 38301739 DOI: 10.1016/j.neuroscience.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17β-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.
Collapse
Affiliation(s)
- Sofia L Gray
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Emma K Lam
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - L Francisco Henao-Diaz
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cecilia Jalabert
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Nguyen DA, Stone MF, Schultz CR, de Araujo Furtado M, Niquet J, Wasterlain CG, Lumley LA. Evaluation of Midazolam-Ketamine-Allopregnanolone Combination Therapy against Cholinergic-Induced Status Epilepticus in Rats. J Pharmacol Exp Ther 2024; 388:376-385. [PMID: 37770198 PMCID: PMC10801769 DOI: 10.1124/jpet.123.001784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Status epilepticus (SE) is a life-threatening development of self-sustaining seizures that becomes resistant to benzodiazepines when treatment is delayed. Benzodiazepine pharmacoresistance is thought in part to result from internalization of synaptic GABAA receptors, which are the main target of the drug. The naturally occurring neurosteroid allopregnanolone is a therapy of interest against SE for its ability to modulate all isoforms of GABAA receptors. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been partially effective in combination with benzodiazepines in mitigating SE-associated neurotoxicity. In this study, allopregnanolone as an adjunct to midazolam or midazolam-ketamine combination therapy was evaluated for efficacy against cholinergic-induced SE. Adult male rats implanted with electroencephalographic (EEG) telemetry devices were exposed to the organophosphorus chemical (OP) soman (GD) and treated with an admix of atropine sulfate and HI-6 at 1 minute after exposure followed by midazolam, midazolam-allopregnanolone, or midazolam-ketamine-allopregnanolone 40 minutes after seizure onset. Neurodegeneration, neuronal loss, and neuroinflammation were assessed 2 weeks after GD exposure. Seizure activity, EEG power integral, and epileptogenesis were also compared among groups. Overall, midazolam-ketamine-allopregnanolone combination therapy was effective in reducing cholinergic-induced toxic signs and neuropathology, particularly in the thalamus and hippocampus. Higher dosage of allopregnanolone administered in combination with midazolam and ketamine was also effective in reducing EEG power integral and epileptogenesis. The current study reports that there is a promising potential of neurosteroids in combination with benzodiazepine and ketamine treatments in a GD model of SE. SIGNIFICANCE STATEMENT: Allopregnanolone, a naturally occurring neurosteroid, reduced pathologies associated with soman (GD) exposure such as epileptogenesis, neurodegeneration, and neuroinflammation, and suppressed GD-induced toxic signs when used as an adjunct to midazolam and ketamine in a delayed treatment model of soman-induced status epilepticus (SE) in rats. However, protection was incomplete, suggesting that further studies are needed to identify optimal combinations of antiseizure medications and routes of administration for maximal efficacy against cholinergic-induced SE.
Collapse
Affiliation(s)
- Donna A Nguyen
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Michael F Stone
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Caroline R Schultz
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Marcio de Araujo Furtado
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Jerome Niquet
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Claude G Wasterlain
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Lucille A Lumley
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, Maryland (D.A.N., M.F.S., C.R.S., L.A.L.); BioSEaD, LLC, Rockville, Maryland (M.D.A.F.); Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California (J.N., C.G.W.); and Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| |
Collapse
|
19
|
Mensah-Nyagan AG, Meyer L, Patte-Mensah C. Modulatory role of neurosteroidogenesis in the spinal cord during peripheral nerve injury-induced chronic pain. Front Neuroendocrinol 2024; 72:101116. [PMID: 38182090 DOI: 10.1016/j.yfrne.2023.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/14/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
The brain and spinal cord (SC) are both targeted by various hormones, including steroid hormones. However, investigations of the modulatory role of hormones on neurobiological functions usually focus only on the brain. The SC received little attention although this structure pivotally controls motor and sensory functions. Here, we critically reviewed key data showing that the process of neurosteroid biosynthesis or neurosteroidogenesis occurring in the SC plays a pivotal role in the modulation of peripheral nerve injury-induced chronic pain (PNICP) or neuropathic pain. Indeed, several active steroidogenic enzymes expressed in the SC produce endogenous neurosteroids that interact with receptors of neurotransmitters controlling pain. The spinal neurosteroidogenesis is differentially regulated during PNICP condition and its blockade modifies painful sensations. The paper suggests that future investigations aiming to develop effective strategies against PNICP or neuropathic pain must integrate in a gender or sex dependent manner the regulatory effects exerted by spinal neurosteroidogenesis.
Collapse
Affiliation(s)
- Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000 Strasbourg, France.
| | - Laurence Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000 Strasbourg, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000 Strasbourg, France
| |
Collapse
|
20
|
Wang T, Chen S, Mao Z, Shang Y, Brinton RD. Allopregnanolone pleiotropic action in neurons and astrocytes: calcium signaling as a unifying mechanism. Front Endocrinol (Lausanne) 2023; 14:1286931. [PMID: 38189047 PMCID: PMC10771836 DOI: 10.3389/fendo.2023.1286931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Allopregnanolone (Allo) is a neurosteroid with pleiotropic action in the brain that includes neurogenesis, oligogenesis, human and rodent neural stem cell regeneration, increased glucose metabolism, mitochondrial respiration and biogenesis, improved cognitive function, and reduction of both inflammation and Alzheimer's disease (AD) pathology. Because the breadth of Allo-induced responses requires activation of multiple systems of biology in the absence of an Allo-specific nuclear receptor, analyses were conducted in both neurons and astrocytes to identify unifying systems and signaling pathways. Methods Mechanisms of Allo action were investigated in embryonic hippocampal neurons and astrocytes cultured in an Aging Model (AM) media. Cellular morphology, mitochondrial function, and transcriptomics were investigated followed by mechanistic pathway analyses. Results In hippocampal neurons, Allo significantly increased neurite outgrowth and synaptic protein expression, which were paralleled by upregulated synaptogenesis and long-term potentiation gene expression profiles. Mechanistically, Allo induced Ca2+/CREB signaling cascades. In parallel, Allo significantly increased maximal mitochondrial respiration, mitochondrial membrane potential, and Complex IV activity while reducing oxidative stress, which required both the GABAA and L-type Ca2+ channels. In astrocytes, Allo increased ATP generation, mitochondrial function and dynamics while reducing oxidative stress, inflammasome indicators, and apoptotic signaling. Mechanistically, Allo regulation of astrocytic mitochondrial function required both the GABAA and L-type Ca2+ channels. Furthermore, Allo activated NRF1-TFAM signaling and increased the DRP1/OPA1 protein ratio, which led to increased mitochondrial biogenesis and dynamics. Conclusion Collectively, the cellular, mitochondrial, transcriptional, and pharmacological profiles provide evidence in support of calcium signaling as a unifying mechanism for Allo pleiotropic actions in the brain.
Collapse
Affiliation(s)
- Tian Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
21
|
Dong M, Wang Y, Li P, Chen Z, Anirudhan V, Cui Q, Rong L, Du R. Allopregnanolone targets nucleoprotein as a novel influenza virus inhibitor. Virol Sin 2023; 38:931-939. [PMID: 37741571 PMCID: PMC10786660 DOI: 10.1016/j.virs.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
Influenza A virus (IAV) poses a global public health concern and remains an imminent threat to human health. Emerging antiviral resistance to the currently approved influenza drugs emphasizes the urgent need for new therapeutic entities against IAV. Allopregnanolone (ALLO) is a natural product that has been approved as an antidepressant drug. In the present study, we repurposed ALLO as a novel inhibitor against IAVs. Mechanistic studies demonstrated that ALLO inhibited virus replication by interfering with the nucleus translocation of viral nucleoprotein (NP). In addition, ALLO showed significant synergistic activity with compound 16, a hemagglutinin inhibitor of IAVs. In summary, we have identified ALLO as a novel influenza virus inhibitor targeting NP, providing a promising candidate that deserves further investigation as a useful anti-influenza strategy in the future.
Collapse
Affiliation(s)
- Meiyue Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zinuo Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA.
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| |
Collapse
|
22
|
Michetti C, Ferrante D, Parisi B, Ciano L, Prestigio C, Casagrande S, Martinoia S, Terranova F, Millo E, Valente P, Giovedi' S, Benfenati F, Baldelli P. Low glycemic index diet restrains epileptogenesis in a gender-specific fashion. Cell Mol Life Sci 2023; 80:356. [PMID: 37947886 PMCID: PMC10638170 DOI: 10.1007/s00018-023-04988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administration of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype. To this aim, we used the Synapsin II knockout (SynIIKO) mouse, a model of temporal lobe epilepsy in which seizures manifest 2-3 months after birth, offering a temporal window in which LGID may affect epileptogenesis. Pregnant SynIIKO mice were fed with either LGID or standard diet during gestation and lactation. Both diets were maintained in weaned mice up to 5 months of age. LGID delayed the seizure onset and induced a reduction of seizures severity only in female SynIIKO mice. In parallel with the epileptic phenotype, high-density multielectrode array recordings revealed a reduction of frequency, amplitude, duration, velocity of propagation and spread of interictal events by LGID in the hippocampus of SynIIKO females, but not mutant males, confirming the gender-specific effect. ELISA-based analysis revealed that LGID increased cortico-hippocampal allopregnanolone (ALLO) levels only in females, while it was unable to affect ALLO plasma concentrations in either sex. The results indicate that the gender-specific interference of LGID with the epileptogenic process can be ascribed to a gender-specific increase in cortical ALLO, a neurosteroid known to strengthen GABAergic transmission. The study highlights the possibility of developing a personalized gender-based therapy for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy.
| | - Daniele Ferrante
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Barbara Parisi
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Lorenzo Ciano
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Fabio Terranova
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Giovedi'
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
23
|
Nishimoto-Kusunose S, Hirakawa A, Tanaka A, Yoshizawa K, Makino K, Takahashi H, Higashi T. Drugs possessing aryloxypropanamine pharmacophore, duloxetine, dapoxetine and propranolol, increase allopregnanolone in rat brain: Possible involvement of allopregnanolone in their central nervous system effects. Steroids 2023; 198:109272. [PMID: 37468115 DOI: 10.1016/j.steroids.2023.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Allopregnanolone (AP) is a neurosteroid synthesized in the brain and a positive allosteric modulator of γ-aminobutyric acid (GABA) type A receptors. Some drugs possessing the aryloxypropanamine (AOPA) pharmacophore, such as fluoxetine, exert their central nervous system (CNS) effects by increasing the brain AP. Although duloxetine (DLX), dapoxetine (DPX), atomoxetine (ATX) and propranolol (PRL) also possess the AOPA pharmacophore and are used to treat some psychiatric disorders, the capabilities of these drugs to increase the brain AP and the possible involvement of AP in their CNS effects remain to be fully elucidated. To clarify these points, we first developed a method for quantifying AP in the rat brain by liquid chromatography/electrospray ionization-tandem mass spectrometry. Analysis of the changes in the brain AP levels using this method revealed that the intraperitoneal administration of DLX (10 mg/kg), DPX (10 mg/kg) and PRL (20 mg/kg) significantly increased the brain AP (DLX: < 0.40-2.74 ng/g tissue, DPX: 1.48-3.83 ng/g tissue and PRL: < 0.40-2.09 ng/g tissue) compared to the saline administration (<0.40 ng/g tissue). These results suggested the possible involvement of the GABAergic neurosteroid, AP, in the central actions of DLX, DPX and PRL. In contrast, ATX (10 mg/kg) did not affect the AP levels in the brain. In addition, the brain and serum AP levels had a remarkably high positive correlation after the administration of DLX, DPX and PRL. Thus, this study proposed the AP-related novel mechanism of actions of DLX, DPX and PRL in the CNS.
Collapse
Affiliation(s)
- Shoichi Nishimoto-Kusunose
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ayaka Hirakawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Asuka Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazumi Yoshizawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kosho Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Faculty of Pharmacy, Musashino University, 1-1-20 Shin-machi, Nishitokyo, Tokyo 202-8585, Japan
| | - Hideyo Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
24
|
Santos-Toscano R, Arevalo MA, Garcia-Segura LM, Grassi D, Lagunas N. Interaction of gonadal hormones, dopaminergic system, and epigenetic regulation in the generation of sex differences in substance use disorders: A systematic review. Front Neuroendocrinol 2023; 71:101085. [PMID: 37543184 DOI: 10.1016/j.yfrne.2023.101085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Substance use disorder (SUD) is a chronic condition characterized by pathological drug-taking and seeking behaviors. Remarkably different between males and females, suggesting that drug addiction is a sexually differentiated disorder. The neurobiological bases of sex differences in SUD include sex-specific reward system activation, influenced by interactions between gonadal hormone level changes, dopaminergic reward circuits, and epigenetic modifications of key reward system genes. This systematic review, adhering to PICOS and PRISMA-P 2015 guidelines, highlights the sex-dependent roles of estrogens, progesterone, and testosterone in SUD. In particular, estradiol elevates and progesterone reduces dopaminergic activity in SUD females, whilst testosterone and progesterone augment SUD behavior in males. Finally, SUD is associated with a sex-specific increase in the rate of opioid and monoaminergic gene methylation. The study reveals the need for detailed research on gonadal hormone levels, dopaminergic or reward system activity, and epigenetic landscapes in both sexes for efficient SUD therapy development.
Collapse
Affiliation(s)
- Raquel Santos-Toscano
- School of Medicine, University of Central Lancashire, 135A Adelphi St, Preston PR1 7BH, United Kingdom
| | - Maria Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniela Grassi
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | - Natalia Lagunas
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Ciudad Universitaria, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
25
|
Reddy DS, Mbilinyi RH, Estes E. Preclinical and clinical pharmacology of brexanolone (allopregnanolone) for postpartum depression: a landmark journey from concept to clinic in neurosteroid replacement therapy. Psychopharmacology (Berl) 2023; 240:1841-1863. [PMID: 37566239 PMCID: PMC10471722 DOI: 10.1007/s00213-023-06427-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
This article describes the critical role of neurosteroids in postpartum depression (PPD) and outlines the landmark pharmacological journey of brexanolone as a first-in-class neurosteroid antidepressant with significant advantages over traditional antidepressants. PPD is a neuroendocrine disorder that affects about 20% of mothers after childbirth and is characterized by symptoms including persistent sadness, fatigue, dysphoria, as well as disturbances in cognition, emotion, appetite, and sleep. The main pathology behind PPD is the postpartum reduction of neurosteroids, referred to as neurosteroid withdrawal, a concept pioneered by our preclinical studies. We developed neurosteroid replacement therapy (NRT) as a rational approach for treating PPD and other conditions related to neurosteroid deficiency, unveiling the power of neurosteroids as novel anxiolytic-antidepressants. The neurosteroid, brexanolone (BX), is a progesterone-derived allopregnanolone that rapidly relieves anxiety and mood deficits by activating GABA-A receptors, making it a transformational treatment for PPD. In 2019, the FDA approved BX, an intravenous formulation of allopregnanolone, as an NRT to treat PPD. In clinical studies, BX significantly improved PPD symptoms within hours of administration, with tolerable side effects including headache, dizziness, and somnolence. We identified the molecular mechanism of BX in a neuronal PPD-like milieu. The mechanism of BX involves activation of both synaptic and extrasynaptic GABA-A receptors, which promote tonic inhibition and serve as a key target for PPD and related conditions. Neurosteroids offer several advantages over traditional antidepressants, including rapid onset, unique mechanism, and lack of tolerance upon repeated use. Some limitations of BX therapy include lack of aqueous solubility, limited accessibility, hospitalization for treatment, lack of oral product, and serious adverse events at high doses. However, the unmet need for synthetic neurosteroids to address this critical condition supersedes these limitations. Recently, we developed novel hydrophilic neurosteroids with a superior profile and improved drug delivery. Overall, approval of BX is a major milestone in the field of neurotherapeutics, paving the way for the development of novel synthetic neurosteroids to treat depression, epilepsy, and status epilepticus.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA.
- Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| | - Robert H Mbilinyi
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| | - Emily Estes
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, 77807, USA
| |
Collapse
|
26
|
Diviccaro S, Cioffi L, Piazza R, Caruso D, Melcangi RC, Giatti S. Neuroactive Steroid-Gut Microbiota Interaction in T2DM Diabetic Encephalopathy. Biomolecules 2023; 13:1325. [PMID: 37759725 PMCID: PMC10527303 DOI: 10.3390/biom13091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The pathological consequences of type 2 diabetes mellitus (T2DM) also involve the central nervous system; indeed, T2DM patients suffer from learning and memory disabilities with a higher risk of developing dementia. Although several factors have been proposed as possible contributors, how neuroactive steroids and the gut microbiome impact brain pathophysiology in T2DM remain unexplored. On this basis, in male Zucker diabetic fatty (ZDF) rats, we studied whether T2DM alters memory abilities using the novel object recognition test, neuroactive steroid levels by liquid chromatography-tandem mass spectrometry, hippocampal parameters using molecular assessments, and gut microbiome composition using 16S next-generation sequencing. Results obtained reveal that T2DM worsens memory abilities and that these are correlated with increased levels of corticosterone in plasma and with a decrease in allopregnanolone in the hippocampus, where neuroinflammation, oxidative stress, and mitochondrial dysfunction were reported. Interestingly, our analysis highlighted a small group of taxa strictly related to both memory impairment and neuroactive steroid levels. Overall, the data underline an interesting role for allopregnanolone and microbiota that may represent candidates for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Rocco Piazza
- Dipartimento di Medicina e Chirurgia, Università di Milano—Bicocca, 20126 Milan, Italy;
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (S.D.); (L.C.); (D.C.); (R.C.M.)
| |
Collapse
|
27
|
Bhatti NA, Jobilal A, Asif K, Jaramillo Villegas M, Pandey P, Tahir AN, Balla N, Arellano Camargo MP, Ahmad S, Kataria J, Abdin ZU, Ayyan M. Exploring Novel Therapeutic Approaches for Depressive Disorders: The Role of Allopregnanolone Agonists. Cureus 2023; 15:e44038. [PMID: 37746458 PMCID: PMC10517642 DOI: 10.7759/cureus.44038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Depressive disorders are caused due to the impaired functioning of important brain networks. Recent studies have also shown that it is caused by a significant reduction in the levels of allopregnanolone, which is a progesterone metabolite. Newer treatment modalities are now focusing on the usage of neuroactive steroids, such as allopregnanolone, in various depressive disorders. Our aim was to provide a comprehensive literature review on the clinical aspects of the allopregnanolone agonists brexanolone and zuranolone with reference to the physiological role of allopregnanolone. Brexanolone was approved by the FDA in 2019 for the treatment of postpartum depression and has greatly influenced further research into potential drugs such as zuranolone, which is currently undergoing phase 3 of clinical trials. Although these drugs exhibit improvement in symptoms of depressive disorders along with notable side effects, further research is required for their future clinical use.
Collapse
Affiliation(s)
| | - Anna Jobilal
- Internal Medicine, Sri Ramaswamy Memorial Medical College Hospital and Research Centre, Kattankulathur, IND
| | - Kainat Asif
- Internal Medicine, Dr. Ruth K. M. Pfau Civil Hospital, Karachi, PAK
| | | | - Priyanka Pandey
- Anatomical Sciences, Hind Institute of Medical Sciences, Sitapur, IND
| | | | - Neeharika Balla
- Internal Medicine, Maharajah's Institute of Medical Sciences, Vizianagaram, IND
| | | | - Sana Ahmad
- Psychiatry, TIME Organization Inc, Baltimore, USA
| | | | - Zain U Abdin
- Family Medicine, IMG Helping Hands, Chicago, USA
| | | |
Collapse
|
28
|
Bello-Alvarez C, Zamora-Sánchez CJ, Peña-Gutiérrez KM, Camacho-Arroyo I. Progesterone and its metabolite allopregnanolone promote invasion of human glioblastoma cells through metalloproteinase‑9 and cSrc kinase. Oncol Lett 2023; 25:223. [PMID: 37153033 PMCID: PMC10157356 DOI: 10.3892/ol.2023.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/26/2023] [Indexed: 05/09/2023] Open
Abstract
Glioblastomas are the most aggressive and common primary brain tumors in adults. Glioblastoma cells have a great capacity to migrate and invade the brain parenchyma, often reaching the contralateral hemisphere. Progesterone (P4) and its metabolite, allopregnanolone (3α-THP), promote the migration and invasion of human glioblastoma-derived cells. P4 induces migration in glioblastoma cells by the activation of the proto-oncogene tyrosine-protein kinase Src (cSrc) and focal adhesion kinase (Fak). In breast cancer cells, cSrc and Fak promote invasion by increasing the expression and activation of extracellular matrix metalloproteinases (MMPs). However, the mechanism of action by which P4 and 3a-THP promote invasion in glioblastoma cells remains unclear. The effects of P4 and 3α-THP on the protein expression levels of MMP-2 and -9 and the participation of cSrc in progestin effects in U251 and U87 human glioblastoma-derived cells were evaluated. It was determined by western blotting that the P4 increased the protein expression level of MMP-9 in U251 and U87 cells, and 3α-THP increased the protein expression level of MMP-9 in U87 cells. None of these progestins modified MMP-2 protein expression levels. The increase in MMP-9 expression was reduced when the intracellular progesterone receptor and cSrc expression were blocked with small interfering RNAs. Cell invasion induced by P4 and 3α-THP was also blocked by inhibiting cSrc activity with PP2 or by cSrc gene silencing. These results suggest that P4 and its metabolite 3α-THP induce the invasion of glioblastoma cells by increasing MMP-9 expression through the cSrc kinase family. The results of this study provide information of interest in the context of targeted therapies against molecular pathways involved in glioblastoma invasion.
Collapse
Affiliation(s)
- Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carmen J. Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Karla M. Peña-Gutiérrez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Correspondence to: Dr Ignacio Camacho-Arroyo, Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Avenue Universidad 3000, Coyoacán, Mexico City 04510, Mexico, E-mail:
| |
Collapse
|
29
|
Hamidovic A, Davis J, Wardle M, Naveed A, Soumare F. Periovulatory Subphase of the Menstrual Cycle Is Marked by a Significant Decrease in Heart Rate Variability. BIOLOGY 2023; 12:785. [PMID: 37372070 DOI: 10.3390/biology12060785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
(1) Background: High-frequency heart rate variability (HF-HRV) is an essential ultradian rhythm that reflects the activity of the PNS to decelerate the heart. It is unknown how HF-HRV varies across the menstrual cycle (MC), and whether progesterone mediates this potential variation. (2) Methods: We enrolled 33 women in the study to attend eight clinic visits across the MC, during which we measured their resting HF-HRV and collected samples for the analysis of luteinizing hormone (LH) and progesterone. We realigned the study data according to the serum LH surge to the early follicular, mid-follicular, periovulatory, early luteal, mid-luteal and late luteal subphases. (3) Results: Pairwise comparisons between all the subphases showed significant differences between the early follicular and periovulatory subphases (β = 0.9302; p ≤ 0.001) and between the periovulatory and early luteal subphases (β = -0.6955; p ≤ 0.05). Progesterone was positively associated with HF-HRV in the early follicular subphase but not the periovulatory subphase (p ≤ 0.05). (4) Conclusions: The present study shows a significant drop in HF-HRV in the anticipation of ovulation. Further research in this area is critical given the marked cardiovascular disease mortality in women.
Collapse
Affiliation(s)
- Ajna Hamidovic
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - John Davis
- Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Margaret Wardle
- Department of Psychology, University of Illinois at Chicago, 1007 W. Harrison St., Chicago, IL 60607, USA
| | - Aamina Naveed
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Fatimata Soumare
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| |
Collapse
|
30
|
Lucchi C, Codeluppi A, Filaferro M, Vitale G, Rustichelli C, Avallone R, Mandrioli J, Biagini G. Human Microglia Synthesize Neurosteroids to Cope with Rotenone-Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12040963. [PMID: 37107338 PMCID: PMC10135967 DOI: 10.3390/antiox12040963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
We obtained evidence that mouse BV2 microglia synthesize neurosteroids dynamically to modify neurosteroid levels in response to oxidative damage caused by rotenone. Here, we evaluated whether neurosteroids could be produced and altered in response to rotenone by the human microglial clone 3 (HMC3) cell line. To this aim, HMC3 cultures were exposed to rotenone (100 nM) and neurosteroids were measured in the culture medium by liquid chromatography with tandem mass spectrometry. Microglia reactivity was evaluated by measuring interleukin 6 (IL-6) levels, whereas cell viability was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. After 24 h (h), rotenone increased IL-6 and reactive oxygen species levels by approximately +37% over the baseline, without affecting cell viability; however, microglia viability was significantly reduced at 48 h (p < 0.01). These changes were accompanied by the downregulation of several neurosteroids, including pregnenolone, pregnenolone sulfate, 5α-dihydroprogesterone, and pregnanolone, except for allopregnanolone, which instead was remarkably increased (p < 0.05). Interestingly, treatment with exogenous allopregnanolone (1 nM) efficiently prevented the reduction in HMC3 cell viability. In conclusion, this is the first evidence that human microglia can produce allopregnanolone and that this neurosteroid is increasingly released in response to oxidative stress, to tentatively support the microglia's survival.
Collapse
Affiliation(s)
- Chiara Lucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alessandro Codeluppi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Filaferro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Vitale
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Rustichelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Neurosciences, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
31
|
Hamidovic A, Davis J, Soumare F, Datta A, Naveed A. Trajectories of Allopregnanolone and Allopregnanolone to Progesterone Ratio across the Six Subphases of Menstrual Cycle. Biomolecules 2023; 13:biom13040652. [PMID: 37189398 DOI: 10.3390/biom13040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Allopregnanolone is one of the most studied neuroactive steroids; yet, despite its relevance to neuropsychiatric research, it is not known how it, as well as its ratio to progesterone, varies across all six subphases of the menstrual cycle. Two enzymes—5α-dihydroprogesterone and 5α-reductase—convert progesterone to allopregnanolone, and, based on immunohistochemical studies in rodents, the activity of 5α-reductase is considered the rate-limiting step in the formation of allopregnanolone. It is not clear, however, whether the same phenomenon is observed across to the menstrual cycle, and, if so, at what point this takes place. Methods: Thirty-seven women completed the study during which they attended eight clinic visits across one menstrual cycle. We analyzed their allopregnanolone and progesterone serum concentrations using ultraperformance liquid chromatography–tandem mass spectrometry, and we implemented a validated method to realign the data from the original eight clinic study visits, following which we imputed the missing data. Hence, we characterized allopregnanolone concentrations, and the ratio of allopregnanolone:progesterone at six menstrual cycle subphases: (1) early follicular, (2) mid-follicular, (3) periovulatory, (4) early luteal, (5) mid-luteal, and (6) late luteal. Results: There were significant differences in allopregnanolone levels between (1) early follicular and early luteal, (2) early follicular and mid-luteal, (3) mid-follicular and mid-luteal, (4) periovulatory and mid-luteal, and (5) mid-luteal and late luteal. We detected a sharp drop in allopregnanolone:progesterone ratio in the early luteal subphase. Within the luteal subphase, the ratio was the lowest in the mid-luteal subphase. Conclusions: Allopregnanolone concentrations are the most distinct, relative to the other subphases, in the mid-luteal subphase. The shape of the allopregnanolone trajectory across the cycle is similar to that of progesterone; however, the proportion of the two neuroactive steroid hormones is drastically different due to enzymatic saturation, which takes place at the start of the early luteal subphase, but continuing through, and peaking, in the mid-luteal subphase. Hence, the estimated activity of 5α-reductase decreases, but does not cease, at any point across the menstrual cycle.
Collapse
Affiliation(s)
- Ajna Hamidovic
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - John Davis
- College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Fatimata Soumare
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Avisek Datta
- School of Public Health, University of Illinois at Chicago, 1603 W. Taylor St., Chicago, IL 60612, USA
| | - Aamina Naveed
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| |
Collapse
|
32
|
Schiavo A, Martins LA, Wearick-Silva LE, Orso R, Xavier LL, Mestriner RG. Can anxiety-like behavior and spatial memory predict the extremes of skilled walking performance in mice? An exploratory, preliminary study. Front Behav Neurosci 2023; 17:1059029. [PMID: 36926582 PMCID: PMC10011164 DOI: 10.3389/fnbeh.2023.1059029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/26/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Skilled walking is influenced by memory, stress, and anxiety. While this is evident in cases of neurological disorders, memory, and anxiety traits may predict skilled walking performance even in normal functioning. Here, we address whether spatial memory and anxiety-like behavior can predict skilled walking performance in mice. Methods A cohort of 60 adult mice underwent a behavioral assessment including general exploration (open field), anxiety-like behavior (elevated plus maze), working and spatial memory (Y-maze and Barnes maze), and skilled walking performance (ladder walking test). Three groups were established based on their skilled walking performance: superior (SP, percentiles ≥75), regular (RP, percentiles 74-26), and inferior (IP, percentiles ≤25) performers. Results Animals from the SP and IP groups spent more time in the elevated plus maze closed arms compared to the RP group. With every second spent in the elevated plus maze closed arms, the probability of the animal exhibiting extreme percentiles in the ladder walking test increased by 1.4%. Moreover, animals that spent 219 s (73% of the total time of the test) or more in those arms were 4.67 times more likely to exhibit either higher or lower percentiles of skilled walking performance. Discussion We discuss and conclude anxiety traits may influence skilled walking performance in facility-reared mice.
Collapse
Affiliation(s)
- Aniuska Schiavo
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Neuroplasticity and Rehabilitation Research Group (NEUROPLAR), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lucas Athaydes Martins
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Neuroplasticity and Rehabilitation Research Group (NEUROPLAR), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luís Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Léder Leal Xavier
- Neuroplasticity and Rehabilitation Research Group (NEUROPLAR), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Neuroplasticity and Rehabilitation Research Group (NEUROPLAR), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
33
|
Gao Q, Sun W, Wang YR, Li ZF, Zhao F, Geng XW, Xu KY, Chen D, Liu K, Xing Y, Liu W, Wei S. Role of allopregnanolone-mediated γ-aminobutyric acid A receptor sensitivity in the pathogenesis of premenstrual dysphoric disorder: Toward precise targets for translational medicine and drug development. Front Psychiatry 2023; 14:1140796. [PMID: 36937732 PMCID: PMC10017536 DOI: 10.3389/fpsyt.2023.1140796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Premenstrual dysphoric disorder (PMDD) can be conceptualized as a disorder of suboptimal sensitivity to neuroactive steroid hormones. Its core symptoms (emotional instability, irritability, depression, and anxiety) are related to the increase of stress sensitivity due to the fluctuation of hormone level in luteal phase of the menstrual cycle. In this review, we describe the emotional regulatory effect of allopregnanolone (ALLO), and summarize the relationship between ALLO and γ-aminobutyric acid A (GABAA) receptor subunits based on rodent experiments and clinical observations. A rapid decrease in ALLO reduces the sensitivity of GABAA receptor, and reduces the chloride influx, hindered the inhibitory effect of GABAergic neurons on pyramidal neurons, and then increased the excitability of pyramidal neurons, resulting in PMDD-like behavior. Finally, we discuss in depth the treatment of PMDD with targeted GABAA receptors, hoping to find a precise target for drug development and subsequent clinical application. In conclusion, PMDD pathophysiology is rooted in GABAA receptor sensitivity changes caused by rapid changes in ALLO levels. Targeting GABAA receptors may alleviate the occurrence of PMDD.
Collapse
Affiliation(s)
- Qian Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Rui Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zi-Fa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xi-Wen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai-Yong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kun Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Xing
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Liu
- Department of Encephalopathy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Wei Liu,
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Sheng Wei,
| |
Collapse
|
34
|
Zamora-Sánchez CJ, Camacho-Arroyo I. Allopregnanolone: Metabolism, Mechanisms of Action, and Its Role in Cancer. Int J Mol Sci 2022; 24:ijms24010560. [PMID: 36614002 PMCID: PMC9820109 DOI: 10.3390/ijms24010560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Allopregnanolone (3α-THP) has been one of the most studied progesterone metabolites for decades. 3α-THP and its synthetic analogs have been evaluated as therapeutic agents for pathologies such as anxiety and depression. Enzymes involved in the metabolism of 3α-THP are expressed in classical and nonclassical steroidogenic tissues. Additionally, due to its chemical structure, 3α-THP presents high affinity and agonist activity for nuclear and membrane receptors of neuroactive steroids and neurotransmitters, such as the Pregnane X Receptor (PXR), membrane progesterone receptors (mPR) and the ionotropic GABAA receptor, among others. 3α-THP has immunomodulator and antiapoptotic properties. It also induces cell proliferation and migration, all of which are critical processes involved in cancer progression. Recently the study of 3α-THP has indicated that low physiological concentrations of this metabolite induce the progression of several types of cancer, such as breast, ovarian, and glioblastoma, while high concentrations inhibit it. In this review, we explore current knowledge on the metabolism and mechanisms of action of 3α-THP in normal and tumor cells.
Collapse
|
35
|
Diviccaro S, Giatti S, Cioffi L, Falvo E, Herian M, Caruso D, Melcangi RC. Gut Inflammation Induced by Finasteride Withdrawal: Therapeutic Effect of Allopregnanolone in Adult Male Rats. Biomolecules 2022; 12:1567. [PMID: 36358917 PMCID: PMC9687671 DOI: 10.3390/biom12111567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 07/29/2023] Open
Abstract
The treatment with finasteride (i.e., an inhibitor of 5α-reductase) may be associated with different side effects (i.e., depression, anxiety, cognitive impairment and sexual dysfunction) inducing the so-called post finasteride syndrome (PFS). Moreover, previous observations in PFS patients and an experimental model showed alterations in gut microbiota populations, suggesting an inflammatory environment. To confirm this hypothesis, we have explored the effect of chronic treatment with finasteride (i.e., for 20 days) and its withdrawal (i.e., for 1 month) on the levels of steroids, neurotransmitters, pro-inflammatory cytokines and gut permeability markers in the colon of adult male rat. The obtained data demonstrate that the levels of allopregnanolone (ALLO) decreased after finasteride treatment and after its withdrawal. Following the drug suspension, the decrease in ALLO levels correlates with an increase in IL-1β and TNF-α, serotonin and a decrease in dopamine. Importantly, ALLO treatment is able to counteract some of these alterations. The relation between ALLO and GABA-A receptors and/or pregnenolone (ALLO precursor) could be crucial in their mode of action. These observations provide an important background to explore further the protective effect of ALLO in the PFS experimental model and the possibility of its translation into clinical therapy.
Collapse
|
36
|
Li TZ, Huang XY, Sun JJ, Geng CA, Zhang XM, Chen JJ. Synthesis and biological evaluation of (+)-paeoveitol derivatives as novel antidepressants. Med Chem Res 2022; 31:2045-2057. [PMID: 36159033 PMCID: PMC9488892 DOI: 10.1007/s00044-022-02973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
The antidepressant activity of (+) and (-)-paeoveitol was first evaluated using the forced swimming test (FST), and (+)-paeoveitol showed potential antidepressant activity by decreasing immobility time of mice (by approximately 26.4%) in the FST at a dose of 20 mg/kg. To explore the structure-activity relationships (SARs) and obtain more potent compounds, twenty derivatives of (+)-paeoveitol were synthesized and evaluated for their agonistic activities on melatonin type I (MT1) and type II (MT2) receptors. As a results, compound 13 with an N-methylpiperazine fragment exhibited obvious effect on MT1 and MT2 receptors with EC50 values of 0.20 and 0.24 mM. Moreover, compound 13 dose-dependently decreased the immobility of mice in the FST and showed an inverted U-shaped dose-effect, and the most efficacious dose (at 40 mg/kg) was comparable to fluoxetine (20 mg/kg) with a reduced immobility time of 29.2% and 34.5%, respectively. In vivo neurochemical assays suggested that compound 13 obviously increased 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and norepinephrine (NE) levels in the mice brain, indicating that its antidepressant effects might be related to the monoaminergic system. In silico ADMET study revealed that 13 has favorable pharmacokinetic properties. These findings suggest that compound 13 could be a potential antidepressant agent. Graphical abstract.
Collapse
Affiliation(s)
- Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 PR China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 PR China
| | - Jin-Jin Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 PR China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 PR China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 PR China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 PR China
- University of Chinese Academy of Sciences, Beijing, 100049 PR China
| |
Collapse
|
37
|
Panzica G, Melcangi RC. Neuroactive steroids: From basic research to clinical use. J Neuroendocrinol 2022; 34:e13102. [PMID: 35128741 DOI: 10.1111/jne.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Affiliation(s)
- GianCarlo Panzica
- Department of Neuroscience Rita Levi Montalcini, Università degli Studi di Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|