1
|
Agbana S, McIlroy M. Extra-nuclear and cytoplasmic steroid receptor signalling in hormone dependent cancers. J Steroid Biochem Mol Biol 2024; 243:106559. [PMID: 38823459 DOI: 10.1016/j.jsbmb.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Steroid hormone receptors are key mediators in the execution of hormone action through a combination of genomic and non-genomic action. Since their isolation and characterisation in the early 20th Century much of our understanding of the biological actions of steroid hormones are underpinned by their activated receptor activity. Over the past two decades there has been an acceleration of more omics-based research which has resulted in a major uptick in our comprehension of genomic steroid action. However, it is well understood that steroid hormones can induce very rapid signalling events in tandem with their genomic actions wherein they exert their influence through alterations in gene expression. Thus the totality of genomic and non-genomic steroid action occurs in a simultaneous and reciprocal manner and a greater appreciation of whole cell action is required to fully evaluate steroid hormone activity in vivo. In this mini-review we outline the most recent developments in non-genomic steroid action and cytoplasmic steroid hormone receptor biology in endocrine-related cancers with a focus on the 3-keto steroid receptors, in particular the androgen receptor.
Collapse
Affiliation(s)
- Stephanie Agbana
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland
| | - Marie McIlroy
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland.
| |
Collapse
|
2
|
Faure MC, Corona R, Roomans C, Lenfant F, Foidart JM, Cornil CA. Role of Membrane Estrogen Receptor Alpha on the Positive Feedback of Estrogens on Kisspeptin and GnRH Neurons. eNeuro 2024; 11:ENEURO.0271-23.2024. [PMID: 39375032 PMCID: PMC11520851 DOI: 10.1523/eneuro.0271-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Estrogens act through nuclear and membrane-initiated signaling. Estrogen receptor alpha (ERα) is critical for reproduction, but the relative contribution of its nuclear and membrane signaling to the central regulation of reproduction is unclear. To address this question, two complementary approaches were used: estetrol (E4) a natural estrogen acting as an agonist of nuclear ERs, but as an antagonist of their membrane fraction, and the C451A-ERα mouse lacking mERα. E4 dose- dependently blocks ovulation in female rats, but the central mechanism underlying this effect is unknown. To determine whether E4 acts centrally to control ovulation, its effect was tested on the positive feedback of estradiol (E2) on neural circuits underlying luteinizing hormone (LH) secretion. In ovariectomized females chronically exposed to a low dose of E2, estradiol benzoate (EB) alone or combined with progesterone (P) induced an increase in the number of kisspeptin (Kp) and gonadotropin-releasing hormone (GnRH) neurons coexpressing Fos, a marker of neuronal activation. E4 blocked these effects of EB, but not when combined to P. These results indicate that E4 blocked the central induction of the positive feedback in the absence of P, suggesting an antagonistic effect of E4 on mERα in the brain as shown in peripheral tissues. In parallel, as opposed to wild-type females, C451A-ERα females did not show the activation of Kp and GnRH neurons in response to EB unless they are treated with P. Together these effects support a role for membrane-initiated estrogen signaling in the activation of the circuit mediating the LH surge.
Collapse
Affiliation(s)
- Mélanie C. Faure
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Rebeca Corona
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Céline Roomans
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297-UPS, CHU, Toulouse 31432, France
| | - Jean-Michel Foidart
- Department of Obstetrics and Gynecology, University of Liège, Liège, Belgium
- Estetra SRL, Légiapark, Boulevard Patience et Beaujonc 3, 4000 Liège, Belgium
| | - Charlotte A. Cornil
- Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Rasic-Markovic A, Djuric E, Skrijelj D, Bjekic-Macut J, Ignjatovic Đ, Sutulovic N, Hrncic D, Mladenovic D, Marković A, Radenković S, Radić L, Radunovic N, Stanojlovic O. Neuroactive steroids in the neuroendocrine control of food intake, metabolism, and reproduction. Endocrine 2024; 85:1050-1057. [PMID: 38635064 DOI: 10.1007/s12020-024-03755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/19/2024] [Indexed: 04/19/2024]
Abstract
Neuroactive steroids are a type of steroid hormones produced within the nervous system or in peripheral glands and then transported to the brain to exert their neuromodulatory effects. Neuroactive steroids have pleiotropic effects, that include promoting myelination, neuroplasticity, and brain development. They also regulate important physiological functions, such as metabolism, feeding, reproduction, and stress response. The homoeostatic processes of metabolism and reproduction are closely linked and mutually dependent. Reproductive events, such as pregnancy, bring about significant changes in metabolism, and metabolic status may affect reproductive function in mammals. In females, the regulation of reproduction and energy balance is controlled by the fluctuations of oestradiol and progesterone throughout the menstrual cycle. Neurosteroids play a key role in the neuroendocrine control of reproduction. The synthesis of neuroestradiol and neuroprogesterone within the brain is a crucial process that facilitates the release of GnRH and LH, which in turn, regulate the transition from oestrogen-negative to oestrogen-positive feedback. In addition to their function in the reproductive system, oestrogen has a key role in the regulation of energy homoeostasis by acting at central and peripheral levels. The oestrogenic effects on body weight homoeostasis are primarily mediated by oestrogen receptors-α (ERα), which are abundantly expressed in multiple brain regions that are implicated in the regulation of food intake, basal metabolism, thermogenesis, and brown tissue distribution. The tight interplay between energy balance and reproductive physiology is facilitated by shared regulatory pathways, namely POMC, NPY and kisspeptin neurons, which are targets of oestrogen regulation and likely participate in different aspects of the joint control of energy balance and reproductive function. The aim of this review is to present a summary of the progress made in uncovering shared regulatory pathways that facilitate the tight coupling between energy balance and reproductive physiology, as well as their reciprocal interactions and the modulation induced by neurosteroids.
Collapse
Affiliation(s)
- Aleksandra Rasic-Markovic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Emilija Djuric
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Daniel Skrijelj
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelica Bjekic-Macut
- Department of Endocrinology, UMC Bežanijska kosa, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Đurđica Ignjatovic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nikola Sutulovic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Hrncic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Mladenovic
- Institute of Pathophysiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Marković
- Department of Endocrinology, Internal Medicine Clinic, University Clinical Centre of the Republic of Srpska, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Saša Radenković
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Niš, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Lena Radić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Olivera Stanojlovic
- Institute of Medical Physiology "Richard Burian", School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Kauffman AS. Neuroendocrine mechanisms underlying estrogen positive feedback and the LH surge. Front Neurosci 2022; 16:953252. [PMID: 35968365 PMCID: PMC9364933 DOI: 10.3389/fnins.2022.953252] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 01/26/2023] Open
Abstract
A fundamental principle in reproductive neuroendocrinology is sex steroid feedback: steroid hormones secreted by the gonads circulate back to the brain to regulate the neural circuits governing the reproductive neuroendocrine axis. These regulatory feedback loops ultimately act to modulate gonadotropin-releasing hormone (GnRH) secretion, thereby affecting gonadotropin secretion from the anterior pituitary. In females, rising estradiol (E2) during the middle of the menstrual (or estrous) cycle paradoxically "switch" from being inhibitory on GnRH secretion ("negative feedback") to stimulating GnRH release ("positive feedback"), resulting in a surge in GnRH secretion and a downstream LH surge that triggers ovulation. While upstream neural afferents of GnRH neurons, including kisspeptin neurons in the rostral hypothalamus, are proposed as critical loci of E2 feedback action, the underlying mechanisms governing the shift between E2 negative and positive feedback are still poorly understood. Indeed, the precise cell targets, neural signaling factors and receptors, hormonal pathways, and molecular mechanisms by which ovarian-derived E2 indirectly stimulates GnRH surge secretion remain incompletely known. In many species, there is also a circadian component to the LH surge, restricting its occurrence to specific times of day, but how the circadian clock interacts with endocrine signals to ultimately time LH surge generation also remains a major gap in knowledge. Here, we focus on classic and recent data from rodent models and discuss the consensus knowledge of the neural players, including kisspeptin, the suprachiasmatic nucleus, and glia, as well as endocrine players, including estradiol and progesterone, in the complex regulation and generation of E2-induced LH surges in females.
Collapse
|