1
|
White matter microstructure and receptive vocabulary in children with cerebral palsy: The role of interhemispheric connectivity. PLoS One 2023; 18:e0280055. [PMID: 36649231 PMCID: PMC9844879 DOI: 10.1371/journal.pone.0280055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Communication and cognitive impairments are common impediments to participation and social functioning in children with cerebral palsy (CP). Bilateral language networks underlie the function of some high-level language-related cognitive functions. PURPOSE To explore the association between receptive vocabulary and white-matter microstructure in the temporal lobes and the central part of the temporo-temporal bundles in children with CP. MATERIALS AND METHODS 37 children with spastic motor type CP (mean age 9.6 years, 25 male) underwent a receptive vocabulary test (Peabody Picture Vocabulary Test, PPVT-IV) and 3T MRI. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for the temporal lobes and the interhemispheric bundles traversing the splenium of the corpus callosum and the anterior commissure. Associations between microstructure and receptive vocabulary function were explored using univariable linear regression. RESULTS PPVT-IV scores were significantly associated with mean white matter MD in the left temporal lobe, but not the right temporal lobe. There was no association between PPVT-IV and mean white matter FA in the temporal lobes. PPVT-IV scores were not significantly associated with the laterality of these diffusion tensor metrics. Within the corpus callosum, FA, but not MD of the temporo-temporal bundles was significantly associated with the PPVT-IV scores. Within the anterior commissure no equivalent relationship between diffusion metrics and PPVT-IV was found. CONCLUSION Our findings add further understanding to the pathophysiological basis underlying receptive vocabulary skills in children with CP that could extend to other patients with early brain damage. This study highlights the importance of interhemispheric connections for receptive vocabulary.
Collapse
|
2
|
Laporta-Hoyos O, Pannek K, Pagnozzi AM, Whittingham K, Wotherspoon J, Benfer K, Fiori S, Ware RS, Boyd RN. Cognitive, academic, executive and psychological functioning in children with spastic motor type cerebral palsy: Influence of extent, location, and laterality of brain lesions. Eur J Paediatr Neurol 2022; 38:33-46. [PMID: 35381411 DOI: 10.1016/j.ejpn.2022.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate, in spastic motor-type cerebral palsy, the association between 1) the location and extent of brain lesions and numerous psychological outcomes; 2) the laterality of brain lesions and performance of verbal-related cognitive functions. METHODS The semi-quantitative scale for MRI (sqMRI) was scored for 101 children with cerebral palsy. Non-verbal and verbal proxy intelligence quotients (IQ), word reading, spelling, numerical operations skills, executive functioning, and psychological adjustment were assessed. Relationships between global and regional sqMRI scores and clinical scores were examined. The best multivariable linear regression model for each outcome was identified using the Bayesian Information Criteria. Regional sqMRI scores, gross motor functioning, manual ability, and epilepsy status were considered for inclusion as covariables. Where sqMRI scores made statistically significant contributions to models of verbal-related functioning, data were reanalysed including these sqMRI scores' laterality index. Verbal-related outcomes were compared between participants with left-sided versus bilateral brain lesions. RESULTS Medial dorsal thalamus and parietal lobe lesions significantly accounted for poorer verbal proxy-IQ. Left-hemisphere lateralization of temporal lobe lesions was associated with poorer verbal proxy-IQ. Participants with bilateral lesions performed significantly better than those with unilateral left-sided lesions in verbal cognitive functions. Controlling for epilepsy diagnosis, participants with ventral posterior lateral thalamus lesions presented with better Behaviour Rating Inventory of Executive Function scores, although within the normal range. sqMRI scores were not significantly associated with some psychological outcomes or these only bordered on significance after accounting for relevant control variables. CONCLUSION The laterality of early-life lesions influences the development of verbal-related cognitive functions.
Collapse
Affiliation(s)
- Olga Laporta-Hoyos
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - Kerstin Pannek
- Australian E-Health Research Centre, CSIRO, Brisbane, Australia.
| | - Alex M Pagnozzi
- Australian E-Health Research Centre, CSIRO, Brisbane, Australia.
| | - Koa Whittingham
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - Jane Wotherspoon
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - Kath Benfer
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - Simona Fiori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Robert S Ware
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| | - Roslyn N Boyd
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Egger ST, Bobes J, Seifritz E, Vetter S, Schuepbach D. Functional transcranial Doppler: Selection of methods for statistical analysis and representation of changes in flow velocity. Health Sci Rep 2021; 4:e400. [PMID: 34632099 PMCID: PMC8493565 DOI: 10.1002/hsr2.400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Transcranial Doppler (TCD) is a method used to study cerebral hemodynamics. In the majority of TCD studies, regression analysis and analysis of variance are the most frequently applied statistical methods. However, due to the dynamic and interdependent nature of flow velocity, nonparametric tests may allow for better statistical analysis and representation of results. METHOD The sample comprised 30 healthy participants, aged 33.87 ± 7.48 years; with 33% (n = 10) females. During a visuo-motor task, the mean flow velocity (MFV) in the middle cerebral artery (MCA) was measured using TCD. The MFV was converted to values relative to the resting state. The results obtained were analyzed using the general linear model (GLM) and the general additional model (GAM). The fit indices of both analysis methods were compared with each other. RESULTS Both MCAs showed a steady increase in MFV during the visuo-motor task, smoothly returning to resting state values. During the first 20 seconds of the visuo-motor task, the MFV increased by a factor of 1.06 ± 0.07 in the right-MCA and by a factor of 1.08 ± 0.07 in the left-MCA. GLM and GAM showed a statistically significant change in MFV (GLM:F(2, 3598) = 16.76, P < .001; GAM:F(2, 3598) = 21.63, P < .001); together with effects of hemispheric side and gender (GLM:F(4, 3596) = 7.83, P < .005; GAM:F(4, 3596) = 2.13, P = .001). Comparing the models using the χ2 test for goodness of fit yields a significant difference χ2 (9.9556) = 0.6836, P < .001. CONCLUSIONS Both the GLM and GAM yielded valid statistical models of MFV in the MCA in healthy subjects. However, the model using the GAM resulted in improved fit indices. The GAM's advantage becomes even clearer when the MFV curves are visualized; yielding a more realistic approach to brain hemodynamics, thus allowing for an improvement in the interpretation of the mathematical and statistical results. Our results demonstrate the utility of the GAM for the analysis and representation of hemodynamic parameters.
Collapse
Affiliation(s)
- Stephan T. Egger
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity of Zürich, Faculty of Medicine, Psychiatric University Hospital of ZurichZurichSwitzerland
- Department of Psychiatry, ISPA, INEUROPA, CIBERSAMUniversity of Oviedo, Faculty of MedicineOviedoSpain
| | - Julio Bobes
- Department of Psychiatry, ISPA, INEUROPA, CIBERSAMUniversity of Oviedo, Faculty of MedicineOviedoSpain
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity of Zürich, Faculty of Medicine, Psychiatric University Hospital of ZurichZurichSwitzerland
| | - Stefan Vetter
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity of Zürich, Faculty of Medicine, Psychiatric University Hospital of ZurichZurichSwitzerland
| | - Daniel Schuepbach
- Department of General Psychiatry, Center of Psychosocial Medicine, University of HeidelbergUniversity of HeidelbergHeidelbergGermany
- Departmet of Psychiatry and PsychotherapyKlinikum am WeissenhofWeinsbergGermany
| |
Collapse
|
4
|
Imaging Developmental and Interventional Plasticity Following Perinatal Stroke. Can J Neurol Sci 2020; 48:157-171. [DOI: 10.1017/cjn.2020.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT:Perinatal stroke occurs around the time of birth and leads to lifelong neurological disabilities including hemiparetic cerebral palsy. Magnetic resonance imaging (MRI) has revolutionized our understanding of developmental neuroplasticity following early injury, quantifying volumetric, structural, functional, and metabolic compensatory changes after perinatal stroke. Such techniques can also be used to investigate how the brain responds to treatment (interventional neuroplasticity). Here, we review the current state of knowledge of how established and emerging neuroimaging modalities are informing neuroplasticity models in children with perinatal stroke. Specifically, we review structural imaging characterizing lesion characteristics and volumetrics, diffusion tensor imaging investigating white matter tracts and networks, task-based functional MRI for localizing function, resting state functional imaging for characterizing functional connectomes, and spectroscopy examining neurometabolic changes. Key challenges and exciting avenues for future investigations are also considered.
Collapse
|
5
|
Gaberova K, Pacheva I, Timova E, Petkova A, Velkova K, Ivanov I. An Individualized Approach to Neuroplasticity After Early Unilateral Brain Damage. Front Psychiatry 2019; 10:747. [PMID: 31798467 PMCID: PMC6878729 DOI: 10.3389/fpsyt.2019.00747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction: Reorganization after early lesions in the developing brain has been an object of extensive scientific work, but even growing data from translational neuroscience studies in the last 20 years does not provide unified factors for prediction of type of reorganization and rehabilitation potential of patients with unilateral cerebral palsy (UCP) due to pre/perinatal insult. Aim: To analyze the type of motor, language, and sensory brain reorganization in patients with right-sided cerebral palsy due to pre/perinatal isolated left-sided brain lesions taking into consideration the type (cortico-subcortical or periventricular) and extent (gray and white matter damage) of the lesion, etiology, comorbidity, and other postnatal factors that could have played a role in the complex process of brain plasticity. Material and Methods: Eight patients with unilateral right cerebral palsy were included in the study. The individual data from fMRI of primary sensory, motor, and language representation were analyzed and compared with respective comprehensive etiological, clinical, and morphological data. Patients were examined clinically and psychologically, and investigated by structural and functional 3T GE scanner. A correlation between the type and extent of the lesion (involvement of cortical and subcortical structures), timing of lesion, type of reorganization (laterality index), and clinical and psychological outcome was done. Results: Significant interindividual diversity was found in the patient group predominantly in the patterns of motor reorganization. Patients with small periventricular lesions have ipsilesional representation of primary motor, sensory, and word generation function. Patients with lesions involving left cortico-subcortical regions show various models of reorganization in all three modalities (ipsilesional, contralesional, and bilateral) and different clinical outcome that seem to be impossible for prediction. However, patients with UCP who demonstrate ipsilesional motor cortical activation have better motor functional capacity. Conclusion: The type and size of the pre/perinatal lesion in left hemisphere could affect the natural potential of the young brain for reorganization and therefore the clinical outcome. Much larger sample and additional correlation with morphological data (volumetry, morphometry, tractography) is needed for determination of possible risk or protective factors that could play a role in the complex process of brain plasticity.
Collapse
Affiliation(s)
- Katerina Gaberova
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria.,Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria
| | - Iliyana Pacheva
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria.,Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv, Bulgaria
| | - Elena Timova
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria
| | - Anelia Petkova
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria
| | - Kichka Velkova
- Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria.,Department of Medical imaging, Medical University - Plovdiv, Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics, University Hospital "St.George", Plovdiv, Bulgaria.,Complex of Translational Neuroscience, Medical University - Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
6
|
Gaberova K, Pacheva I, Ivanov I. Task-related fMRI in hemiplegic cerebral palsy-A systematic review. J Eval Clin Pract 2018; 24:839-850. [PMID: 29700896 DOI: 10.1111/jep.12929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 11/27/2022]
Abstract
RATIONALE Functional magnetic resonance imaging (fMRI) is used widely to study reorganization after early brain injuries. Unilateral cerebral palsy (UCP) is an appealing model for studying brain plasticity by fMRI. AIM To summarize the results of task-related fMRI studies in UCP in order to get better understanding of the mechanism of neuroplasticity of the developing brain and its reorganization potential and better translation of this knowledge to clinical practice. METHODS A systematic search was conducted on the PubMed database by keywords: "cerebral palsy", "congenital hemiparesis", "unilateral", "Magnetic resonance imaging" , "fMRI", "reorganization", and "plasticity" The exclusion criteria were as follows: case reports; reviews; studies exploring non-UCP patients; and studies with results of rehabilitation. RESULTS We found 7 articles investigated sensory tasks; 9 studies-motor tasks; 12 studies-speech tasks. Ipsilesional reorganization is dominant in sensory tasks (in 74/77 patients), contralesional-in only 3/77. In motor tasks, bilateral activation is found in 64/83, only contralesional-in 11/83, and only ipsilesional-8/83. Speech perception is bilateral in 35/51, only or dominantly ipsilesional (left-sided) in 8/51, and dominantly contralesional (right-sided) in 8/51. Speech production is only or dominantly contralesional (right-sided) in 88/130, bilateral-26/130, and only or dominantly ipsilesional (left-sided)-in 16/130. DISCUSSION The sensory system is the most "rigid" to reorganization probably due to absence of ipsilateral (contralesional) primary somatosensory representation. The motor system is more "flexible" due to ipsilateral (contralesional) motor pathways. The speech perception and production show greater flexibility resulting in more bilateral or contralateral activation. CONCLUSIONS The models of reorganization are variable, depending on the development and function of each neural system and the extent and timing of the damage. The plasticity patterns may guide therapeutic intervention and prognostics, thus proving the fruitiness of the translational approach in neurosciences.
Collapse
Affiliation(s)
- Katerina Gaberova
- Department of Pediatrics, St. George University Hospital, Plovdiv, Bulgaria
| | - Iliyana Pacheva
- Department of Pediatrics, St. George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University-Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics, St. George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University-Plovdiv, Bulgaria
| |
Collapse
|
7
|
Gavgani AM, Wong RH, Howe PR, Hodgson DM, Walker FR, Nalivaiko E. Cybersickness-related changes in brain hemodynamics: A pilot study comparing transcranial Doppler and near-infrared spectroscopy assessments during a virtual ride on a roller coaster. Physiol Behav 2018; 191:56-64. [DOI: 10.1016/j.physbeh.2018.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/17/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
|