1
|
Taams NE, Knol MJ, Hanewinckel R, Drenthen J, Reilly MM, van Doorn PA, Adams HHH, Ikram MA. Association of common genetic variants with chronic axonal polyneuropathy in the general population: a genome-wide association study. Front Neurol 2024; 15:1422824. [PMID: 39022727 PMCID: PMC11253699 DOI: 10.3389/fneur.2024.1422824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
IntroductionDisease susceptibility of chronic axonal polyneuropathy is not fully explained by clinical risk factors. Therefore, we determined the contribution of common genetic variants in chronic axonal polyneuropathy in the general population.MethodsThis study was performed in two population-based studies. Polyneuropathy diagnosis was based on screening in the Rotterdam Study and on ICD-10 codes in the UK Biobank. We determined the heritability of the sural nerve amplitude and performed genome-wide association studies of chronic axonal polyneuropathy and sural sensory nerve amplitude. Furthermore, we zoomed in on variants in and surrounding 100 autosomal genes known to cause polyneuropathy based on literature and expert knowledge (candidate genes), and we performed a gene-based analysis. Analyses were adjusted for age, sex and population stratification.ResultsChronic axonal polyneuropathy was present in 2,357 of the 458,567 participants and 54.3% of the total population was female. Heritability of sural nerve amplitude was 0.49 (p = 0.067) (N = 1,153). No variants (p < 5.0×10−8) or genes (p < 2.7×10−6) reached genome-wide significance for its association with polyneuropathy. Focusing on variants in and surrounding the candidate genes in the GWAS (p < 3.9×10−6) and on these genes in the gene-based analysis (p < 5.0×10−4) neither yielded significant results.DiscussionWe did not find common variants associated with chronic axonal polyneuropathy in the general population. Larger studies are needed to determine if genetic susceptibility based on both common and rare genetic variants affect the risk for chronic axonal polyneuropathy in the general population.
Collapse
Affiliation(s)
- Noor E. Taams
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Neurology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Maria J. Knol
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rens Hanewinckel
- Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Judith Drenthen
- Department of Clinical Neurophysiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mary M. Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Pieter A. van Doorn
- Department of Neurology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hieab H. H. Adams
- Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
2
|
Dratch L, Azage M, Baldwin A, Johnson K, Paul RA, Bardakjian TM, Michon SC, Amado DA, Baer M, Deik AF, Elman LB, Gonzalez-Alegre P, Guo MH, Hamedani AG, Irwin DJ, Lasker A, Orthmann-Murphy J, Quinn C, Tropea TF, Scherer SS, Ellis CA. Genetic testing in adults with neurologic disorders: indications, approach, and clinical impacts. J Neurol 2024; 271:733-747. [PMID: 37891417 PMCID: PMC11095966 DOI: 10.1007/s00415-023-12058-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
The role of genetic testing in neurologic clinical practice has increased dramatically in recent years, driven by research on genetic causes of neurologic disease and increased availability of genetic sequencing technology. Genetic testing is now indicated for adults with a wide range of common neurologic conditions. The potential clinical impacts of a genetic diagnosis are also rapidly expanding, with a growing list of gene-specific treatments and clinical trials, in addition to important implications for prognosis, surveillance, family planning, and diagnostic closure. The goals of this review are to provide practical guidance for clinicians about the role of genetics in their practice and to provide the neuroscience research community with a broad survey of current progress in this field. We aim to answer three questions for the neurologist in practice: Which of my patients need genetic testing? What testing should I order? And how will genetic testing help my patient? We focus on common neurologic disorders and presentations to the neurology clinic. For each condition, we review the most current guidelines and evidence regarding indications for genetic testing, expected diagnostic yield, and recommended testing approach. We also focus on clinical impacts of genetic diagnoses, highlighting a number of gene-specific therapies recently approved for clinical use, and a rapidly expanding landscape of gene-specific clinical trials, many using novel nucleotide-based therapeutic modalities like antisense oligonucleotides and gene transfer. We anticipate that more widespread use of genetic testing will help advance therapeutic development and improve the care, and outcomes, of patients with neurologic conditions.
Collapse
Affiliation(s)
- Laynie Dratch
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Meron Azage
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Aaron Baldwin
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Kelsey Johnson
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Rachel A Paul
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Tanya M Bardakjian
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
- Sarepta Therapeutics Inc, Cambridge, MA, 02142, USA
| | - Sara-Claude Michon
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Defne A Amado
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Michael Baer
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Andres F Deik
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Lauren B Elman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Pedro Gonzalez-Alegre
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
- Spark Therapeutics Inc, Philadelphia, PA, 19104, USA
| | - Michael H Guo
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Ali G Hamedani
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Aaron Lasker
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Jennifer Orthmann-Murphy
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Colin Quinn
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Thomas F Tropea
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Steven S Scherer
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St, 3 West Gates Building, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Ng KWP, Chin HL, Chin AXY, Goh DLM. Using gene panels in the diagnosis of neuromuscular disorders: A mini-review. Front Neurol 2022; 13:997551. [PMID: 36313509 PMCID: PMC9602396 DOI: 10.3389/fneur.2022.997551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 09/26/2023] Open
Abstract
The diagnosis of inherited neuromuscular disorders is challenging due to their genetic and phenotypic variability. Traditionally, neurophysiology and histopathology were primarily used in the initial diagnostic approach to these conditions. Sanger sequencing for molecular diagnosis was less frequently utilized as its application was a time-consuming and cost-intensive process. The advent and accessibility of next-generation sequencing (NGS) has revolutionized the evaluation process of genetically heterogenous neuromuscular disorders. Current NGS diagnostic testing approaches include gene panels, whole exome sequencing (WES), and whole genome sequencing (WGS). Gene panels are often the most widely used, being more accessible due to availability and affordability. In this mini-review, we describe the benefits and risks of clinical genetic testing. We also discuss the utility, benefits, challenges, and limitations of using gene panels in the evaluation of neuromuscular disorders.
Collapse
Affiliation(s)
- Kay W. P. Ng
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amanda X. Y. Chin
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Denise Li-Meng Goh
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Genetic Workup for Charcot–Marie–Tooth Neuropathy: A Retrospective Single-Site Experience Covering 15 Years. Life (Basel) 2022; 12:life12030402. [PMID: 35330153 PMCID: PMC8948690 DOI: 10.3390/life12030402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution of CMT subtypes in our cohort and reporting a peculiar phenotype. Since 2004, 585 patients (447 index cases) have been evaluated at our center, 64.9% of whom have a demyelinating neuropathy and 35.1% of whom have an axonal neuropathy. A genetic diagnosis was achieved in 66% of all patients, with the following distribution: CMT1A (48%), HNPP (14%), CMT1X (13%), CMT2A (5%), and P0-related neuropathies (7%), accounting all together for 87% of all the molecularly defined neuropathies. Interestingly, we observe a peculiar phenotype with initial exclusive lower limb involvement as well as lower limb involvement that is maintained over time, which we have defined as a “strictly length-dependent” phenotype. Most patients with this clinical presentation shared variants in either HSPB1 or MPZ genes. The identification of distinctive phenotypes such as this one may help to address genetic diagnosis. In conclusion, we describe our diagnostic experiences as a multidisciplinary outpatient clinic, combining a gene-by-gene approach or targeted gene panels based on clinical presentation.
Collapse
|
6
|
Felice KJ, Whitaker CH, Khorasanizadeh S. Diagnostic yield of advanced genetic testing in patients with hereditary neuropathies: A retrospective single-site study. Muscle Nerve 2021; 64:454-461. [PMID: 34232518 DOI: 10.1002/mus.27368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION/AIMS Advanced genetic testing including next-generation sequencing (AGT/NGS) has facilitated DNA testing in the clinical setting and greatly expanded new gene discovery for the Charcot-Marie-Tooth neuropathies and other hereditary neuropathies (CMT/HN). Herein, we report AGT/NGS results, clinical findings, and diagnostic yield in a cohort of CMT/HN patients evaluated at our neuropathy care center. METHODS We reviewed the medical records of all patients with suspected CMT/HN who underwent AGT/NGS at the Hospital for Special Care from January 2017 through January 2020. Patients with variants reported as pathogenic or likely pathogenic were included for further clinical review. RESULTS We ordered AGT/NGS on 108 patients with suspected CMT/HN. Of these, pathogenic or likely pathogenic variants were identified in 17 patients (diagnostic yield, 15.7%), including 6 (35%) with PMP22 duplications; 3 (18%) with MPZ variants; 2 (12%) with MFN2 variants; and 1 each with NEFL, IGHMBP2, GJB1, BSCL2, DNM2, and TTR variants. Diagnostic yield increased to 31.0% for patients with a positive family history. DISCUSSION AGT/NGS panels can provide specific genetic diagnoses for a subset of patients with CMT/HN disorders, which improves disease and genetic counseling and prepares patients for disease-focused therapies. Despite these advancements, many patients with known or suspected CMT/HN disorders remain without a specific genetic diagnosis. Continued advancements in genetic testing, such as multiomic technology and better understanding of genotype-phenotype correlation, will further improve detection rates for patients with suspected CMT/HN disorders.
Collapse
Affiliation(s)
- Kevin J Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Sadaf Khorasanizadeh
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| |
Collapse
|
7
|
Abstract
Abstract
Inherited peripheral neuropathy is the most common hereditary neuromuscular disease with a prevalence of about 1:2,500. The most frequent form is Charcot-Marie-Tooth disease (CMT, or hereditary motor and sensory neuropathy [HMSN]). Other clinical entities are hereditary neuropathy with liability to pressure palsies (HNPP), distal hereditary motor neuropathies (dHMN), and hereditary sensory and autonomic neuropathies (HSAN). With the exception of HNPP, which is almost always caused by defects of the PMP22 gene, all other forms show genetic heterogeneity with altogether more than 100 genes involved. Mutation detection rates vary considerably, reaching up to 80 % in demyelinating CMT (CMT1) but are still as low as 10–30 % in axonal CMT (CMT2), dHMN, and HSAN. Based on current information, analysis of only four genes (PMP22, GJB1, MPZ, MFN2) identifies 80–90 % of CMT-causing mutations that can be detected in all known disease genes. For the remaining patients, parallel analysis of multiple neuropathy genes using next-generation sequencing is now replacing phenotype-oriented multistep gene-by-gene sequencing. Such approaches tend to generate a wealth of genetic information that requires comprehensive evaluation of the pathogenic relevance of identified variants. In this review, we present current classification systems, specific phenotypic clues, and diagnostic yields in the different subgroups of hereditary CMT and motor neuropathies.
Collapse
|