1
|
Zhang X, Xiong Q, Lin W, Wang Q, Zhang D, Xu R, Zhou X, Zhang S, Peng L, Yuan Q. Schwann Cells Contribute to Alveolar Bone Regeneration by Promoting Cell Proliferation. J Bone Miner Res 2023; 38:119-130. [PMID: 36331097 DOI: 10.1002/jbmr.4735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The plasticity of Schwann cells (SCs) following nerve injury is a critical feature in the regeneration of peripheral nerves as well as surrounding tissues. Here, we show a pivotal role of Schwann cell-derived cells in alveolar bone regeneration through the specific ablation of proteolipid protein 1 (Plp)-expressing cells and the transplantation of teased nerve fibers and associated cells. With inducible Plp specific genetic tracing, we observe that Plp+ cells migrate into wounded alveolar defect and dedifferentiate into repair SCs. Notably, these cells barely transdifferentiate into osteogenic cell lineage in both SCs tracing model and transplant model, but secret factors to enhance the proliferation of alveolar skeletal stem cells (aSSCs). As to the mechanism, this effect is associated with the upregulation of extracellular matrix (ECM) receptors and receptor tyrosine kinases (RTKs) signaling and the downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and the phosphoinositide 3-kinase-protein kinase B (PI3K-Akt) pathway. Collectively, our data demonstrate that SCs dedifferentiate after neighboring alveolar bone injury and contribute to bone regeneration mainly by a paracrine function. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaohan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Peng
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Heinzel JC, Oberhauser V, Keibl C, Schädl B, Swiadek NV, Längle G, Frick H, Slezak C, Prahm C, Grillari J, Kolbenschlag J, Hercher D. ESWT Diminishes Axonal Regeneration following Repair of the Rat Median Nerve with Muscle-In-Vein Conduits but Not after Autologous Nerve Grafting. Biomedicines 2022; 10:biomedicines10081777. [PMID: 35892677 PMCID: PMC9394363 DOI: 10.3390/biomedicines10081777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Investigations reporting positive effects of extracorporeal shockwave therapy (ESWT) on nerve regeneration are limited to the rat sciatic nerve model. The effects of ESWT on muscle-in-vein conduits (MVCs) have also not been investigated yet. This study aimed to evaluate the effects of ESWT after repair of the rat median nerve with either autografts (ANGs) or MVCs. In male Lewis rats, a 7 mm segment of the right median nerve was reconstructed either with an ANG or an MVC. For each reconstructive technique, one group of animals received one application of ESWT while the other rats served as controls. The animals were observed for 12 weeks, and nerve regeneration was assessed using computerized gait analysis, the grasping test, electrophysiological evaluations and histological quantification of axons, blood vessels and lymphatic vasculature. Here, we provide for the first time a comprehensive analysis of ESWT effects on nerve regeneration in a rat model of median nerve injury. Furthermore, this study is among the first reporting the quantification of lymphatic vessels following peripheral nerve injury and reconstruction in vivo. While we found no significant direct positive effects of ESWT on peripheral nerve regeneration, results following nerve repair with MVCs were significantly inferior to those after ANG repair.
Collapse
Affiliation(s)
- Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Viola Oberhauser
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Claudia Keibl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Barbara Schädl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Core Facility Morphology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicole V. Swiadek
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gregor Längle
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Helen Frick
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Cyrill Slezak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Physics, Utah Valley University, Orem, UT 84058, USA
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence:
| |
Collapse
|
3
|
Slezak C, Rose R, Jilge JM, Nuster R, Hercher D, Slezak P. Physical Considerations for In Vitro ESWT Research Design. Int J Mol Sci 2021; 23:313. [PMID: 35008735 PMCID: PMC8745079 DOI: 10.3390/ijms23010313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/25/2022] Open
Abstract
In vitro investigations, which comprise the bulk of research efforts geared at identifying an underlying biomechanical mechanism for extracorporeal shock wave therapy (ESWT), are commonly hampered by inadequate descriptions of the underlying therapeutic acoustical pressure waves. We demonstrate the necessity of in-situ sound pressure measurements inside the treated samples considering the significant differences associated with available applicator technologies and cell containment. A statistical analysis of pulse-to-pulse variability in an electrohydraulic applicator yields a recommendation for a minimal pulse number of n = 300 for cell pallets and suspensions to achieve reproducible treatments. Non-linear absorption behavior of sample holders and boundary effects are shown for transient peak pressures and applied energies and may serve as a guide when in-situ measurements are not available or can be used as a controllable experimental design factor. For the use in microbiological investigations of ESWT we provide actionable identification of common problems in describing physical shockwave parameters and improving experimental setups by; (1) promoting in-situ sound field measurements, (2) statistical evaluation of applicator variability, and (3) extrapolation of treatment parameters based on focal and treatment volumes.
Collapse
Affiliation(s)
- Cyrill Slezak
- Department of Physics, Utah Valley University, Orem, UT 84059, USA;
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria; (R.R.); (J.M.J.); (D.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Roland Rose
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria; (R.R.); (J.M.J.); (D.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria
| | - Julia M. Jilge
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria; (R.R.); (J.M.J.); (D.H.)
- University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Robert Nuster
- Department of Physics, University of Graz, 8010 Graz, Austria;
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria; (R.R.); (J.M.J.); (D.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Paul Slezak
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria; (R.R.); (J.M.J.); (D.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|