1
|
Taruta A, Hiyoshi T, Harada A, Nakashima M. Electrical impedance myography detects progressive pathological alterations in the hindlimb muscle of the PMP22-C3 mice, an animal model of CMT1A. Exp Neurol 2024; 385:115111. [PMID: 39667653 DOI: 10.1016/j.expneurol.2024.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Charcot-Marie-Tooth type 1A (CMT1A) is the most common inherited peripheral dysmyelinating neuropathy. Although lower limb muscle weakness is the most important factor affecting the quality of life of patients with CMT1A, existing clinical measures for its evaluation have limitations, including low sensitivity in detecting disease progression. Electrical impedance myography (EIM) is a newer tool that enables noninvasive evaluation of muscle state by measuring muscle composition, and potentially supports the evaluation of neuromuscular disease progression and treatment effects. To determine the potential of EIM as a CMT1A biomarker, we obtained natural history data for EIM from the gastrocnemius muscle of the PMP22-C3 mice, an animal model of CMT1A. Alterations in the EIM parameters, weak hindlimb grip strength, decreased muscle fiber size, and changes in the mRNA expression of genes related to neuromuscular junction dysfunction were found. These changes were more pronounced at later stages (12 and 18 weeks of age) than at earlier stage (6 weeks of age), indicating that EIM can detect disease progression in PMP22-C3 mice. Our preclinical findings support the use of EIM as a potential translational biomarker for assessing progressive changes in the pathological muscle state in CMT1A.
Collapse
Affiliation(s)
- Atsuki Taruta
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tetsuaki Hiyoshi
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akina Harada
- Muscular Disease and Neuropathy Unit, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masato Nakashima
- Neuroscience Translational Medicine, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| |
Collapse
|
2
|
Moss KR, Mi R, Kawaguchi R, Ehmsen JT, Shi Q, Vargas PI, Mukherjee-Clavin B, Lee G, Höke A. hESC- and hiPSC-derived Schwann cells are molecularly comparable and functionally equivalent. iScience 2024; 27:109855. [PMID: 38770143 PMCID: PMC11103364 DOI: 10.1016/j.isci.2024.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/11/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Establishing robust models of human myelinating Schwann cells is critical for studying peripheral nerve injury and disease. Stem cell differentiation has emerged as a key human cell model and disease motivating development of Schwann cell differentiation protocols. Human embryonic stem cells (hESCs) are considered the ideal pluripotent cell but ethical concerns regarding their use have propelled the popularity of human induced pluripotent stem cells (hiPSCs). Given that the equivalence of hESCs and hiPSCs remains controversial, we sought to compare the molecular and functional equivalence of hESC- and hiPSC-derived Schwann cells generated with our previously reported protocol. We identified only modest transcriptome differences by RNA sequencing and insignificant proteome differences by antibody array. Additionally, both cell types comparably improved nerve regeneration and function in a chronic denervation and regeneration animal model. Our findings demonstrate that Schwann cells derived from hESCs and hiPSCs with our protocol are molecularly comparable and functionally equivalent.
Collapse
Affiliation(s)
- Kathryn R. Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruifa Mi
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Riki Kawaguchi
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jeffrey T. Ehmsen
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiang Shi
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paula I. Vargas
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bipasha Mukherjee-Clavin
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabsang Lee
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Cunningham ME, McGonigal R, Barrie JA, Campbell CI, Yao D, Willison HJ. Axolemmal nanoruptures arising from paranodal membrane injury induce secondary axon degeneration in murine Guillain-Barré syndrome. J Peripher Nerv Syst 2023; 28:17-31. [PMID: 36710500 PMCID: PMC10947354 DOI: 10.1111/jns.12532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
The major determinant of poor outcome in Guillain-Barré syndrome (GBS) is axonal degeneration. Pathways leading to primary axonal injury in the motor axonal variant are well established, whereas mechanisms of secondary axonal injury in acute inflammatory demyelinating polyneuropathy (AIDP) are unknown. We recently developed an autoantibody-and complement-mediated model of murine AIDP, in which prominent injury to glial membranes at the node of Ranvier results in severe disruption to paranodal components. Acutely, axonal integrity was maintained, but over time secondary axonal degeneration occurred. Herein, we describe the differential mechanisms underlying acute glial membrane injury and secondary axonal injury in this model. Ex vivo nerve-muscle explants were injured for either acute or extended periods with an autoantibody-and complement-mediated injury to glial paranodal membranes. This model was used to test several possible mechanisms of axon degeneration including calpain activation, and to monitor live axonal calcium signalling. Glial calpains induced acute disruption of paranodal membrane proteins in the absence of discernible axonal injury. Over time, we observed progressive axonal degeneration which was markedly attenuated by axon-specific calpain inhibition. Injury was unaffected by all other tested methods of protection. Trans-axolemmal diffusion of fluorescent proteins and live calcium imaging studies indirectly demonstrated the presence of nanoruptures in the axon membrane. This study outlines one mechanism by which secondary axonal degeneration arises in the AIDP variant of GBS where acute paranodal loop injury is prominent. The data also support the development of calpain inhibitors to attenuate both primary and secondary axonal degeneration in GBS.
Collapse
Affiliation(s)
| | - Rhona McGonigal
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | | | | | - Denggao Yao
- School of Infection & ImmunityUniversity of GlasgowGlasgowUK
| | | |
Collapse
|
4
|
Ostertag C, Klein D, Martini R. Presymptomatic macrophage targeting has a long-lasting therapeutic effect on treatment termination. Exp Neurol 2022; 357:114195. [PMID: 35931123 DOI: 10.1016/j.expneurol.2022.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022]
Abstract
Macrophage-mediated inflammation is a potent driver of disease progression in mouse models of Charcot-Marie-Tooth (CMT) 1 diseases. This leads to the possibility to consider these cells as therapeutic targets to dampen disease outcome in the so far non-treatable neuropathies. As a pharmacological proof-of-principle study, long-term targeting of nerve macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 showed a substantial alleviation of the neuropathy in distinct CMT1 mouse models. However, regarding translational options, clinically relevant questions emerged regarding treatment onset, duration and termination. Corroborating previous data, we here show that in a model for CMT1B, peripheral neuropathy was substantially alleviated after early continuous PLX5622 treatment in CMT1B mice, leading to preserved motor function. However, late-onset treatment failed to mitigate histopathological and clinical features, despite a similar reduction in the number of macrophages. Surprisingly, in CMT1B mice, terminating early PLX5622 treatment at six months was still sufficient to preserve motor function at 12 months of age, suggesting a long-lasting, therapeutic effect of early macrophage depletion. This novel and unexpected finding may have important translational implications, since we here show that continuous macrophage targeting appears not to be necessary for disease alleviation, provided that the treatment starts within an early, critical time window.
Collapse
Affiliation(s)
- Charlotte Ostertag
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Application Research of Tooth Arrangement Based on Rotation Matrix Calculation and Resistance Detection in Oral. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4675181. [PMID: 35634084 PMCID: PMC9142327 DOI: 10.1155/2022/4675181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022]
Abstract
The goal of this research was to provide a new approach for analyzing orthodontic teeth arrangement inside oral depending on the rotation matrix computation and resistance detection. The present method includes the following operations within a certain therapy period: first three-dimensional positions of the tooth were evaluated with a pierced laser beam and a three-dimensional system of surface-scanning. Second, the three-dimensional shape data was automatically registered at maxillary 1st molars, and methods of coordinate had been normalized. Third, a translation vector and rotation matrix had been evaluated from automatic registration of two position data of a particular tooth. Fourth, the limited spiral axes of teeth had been measured as the zero rotational dislocation locus; and impressions for a model of the dental cast had been taken at five different points: shortly before and after device was fitted, and ten days, one month, and two months after the treatment started. The results showed that existing analysis approach could more quickly classify a specific tooth's movement by spinning all over and translating along a finite helical axis. It can provide statistical visual three-dimensional data on complex tooth arrangement throughout orthodontic therapy.
Collapse
|