1
|
New Remains of Scandiavis mikkelseni Inform Avian Phylogenetic Relationships and Brain Evolution. DIVERSITY 2021. [DOI: 10.3390/d13120651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although an increasing number of studies are combining skeletal and neural morphology data in a phylogenetic context, most studies do not include extinct taxa due to the rarity of preserved endocasts. The early Eocene avifauna of the Fur Formation of Denmark presents an excellent opportunity for further study of extinct osteological and endocranial morphology as fossils are often exceptionally preserved in three dimensions. Here, we use X-ray computed tomography to present additional material of the previously described taxon Scandiavis mikkelseni and reassess its phylogenetic placement using a previously published dataset. The new specimen provides novel insights into the osteological morphology and brain anatomy of Scandiavis. The virtual endocast exhibits a morphology comparable to that of modern avian species. Endocranial evaluation shows that it was remarkably similar to that of certain extant Charadriiformes, yet also possessed a novel combination of traits. This may mean that traits previously proposed to be the result of shifts in ecology later in the evolutionary history of Charadriiformes may instead show a more complex distribution in stem Charadriiformes and/or Gruiformes depending on the interrelationships of these important clades. Evaluation of skeletal and endocranial character state changes within a previously published phylogeny confirms both S. mikkelseni and a putative extinct charadriiform, Nahmavis grandei, as charadriiform. Results bolster the likelihood that both taxa are critical fossils for divergence dating and highlight a biogeographic pattern similar to that of Gruiformes.
Collapse
|
2
|
Smith NA, Koeller KL, Clarke JA, Ksepka DT, Mitchell JS, Nabavizadeh A, Ridgley RC, Witmer LM. Convergent evolution in dippers (Aves, Cinclidae): The only wing-propelled diving songbirds. Anat Rec (Hoboken) 2021; 305:1563-1591. [PMID: 34813153 PMCID: PMC9298897 DOI: 10.1002/ar.24820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022]
Abstract
Of the more than 6,000 members of the most speciose avian clade, Passeriformes (perching birds), only the five species of dippers (Cinclidae, Cinclus) use their wings to swim underwater. Among nonpasserine wing‐propelled divers (alcids, diving petrels, penguins, and plotopterids), convergent evolution of morphological characteristics related to this highly derived method of locomotion have been well‐documented, suggesting that the demands of this behavior exert strong selective pressure. However, despite their unique anatomical attributes, dippers have been the focus of comparatively few studies and potential convergence between dippers and nonpasseriform wing‐propelled divers has not been previously examined. In this study, a suite of characteristics that are shared among many wing‐propelled diving birds were identified and the distribution of those characteristics across representatives of all clades of extant and extinct wing‐propelled divers were evaluated to assess convergence. Putatively convergent characteristics were drawn from a relatively wide range of sources including osteology, myology, endocranial anatomy, integument, and ethology. Comparisons reveal that whereas nonpasseriform wing‐propelled divers do in fact share some anatomical characteristics putatively associated with the biomechanics of underwater “flight”, dippers have evolved this highly derived method of locomotion without converging on the majority of concomitant changes observed in other taxa. Changes in the flight musculature and feathers, reduction of the keratin bounded external nares and an increase in subcutaneous fat are shared with other wing‐propelled diving birds, but endocranial anatomy shows no significant shifts and osteological modifications are limited. Muscular and integumentary novelties may precede skeletal and neuroendocranial morphology in the acquisition of this novel locomotory mode, with implications for understanding potential biases in the fossil record of other such transitions. Thus, dippers represent an example of a highly derived and complex behavioral convergence that is not fully associated with the anatomical changes observed in other wing‐propelled divers, perhaps owing to the relative recency of their divergence from nondiving passeriforms.
Collapse
Affiliation(s)
- N Adam Smith
- Campbell Geology Museum, Clemson University, Clemson, South Carolina, USA.,Department of Science and Education, Field Museum of Natural History, Chicago, Illinois, USA
| | - Krista L Koeller
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | | | - Jonathan S Mitchell
- Department of Biology, West Virginia University Institute of Technology, Beckley, West Virginia, USA
| | - Ali Nabavizadeh
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan C Ridgley
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| |
Collapse
|
3
|
Acosta Hospitaleche C, Paulina-Carabajal A, Yury-Yáñez R. The skull of the Miocene Spheniscus urbinai (Aves, Sphenisciformes): osteology, brain morphology, and the cranial pneumatic systems. J Anat 2021; 239:151-166. [PMID: 33576081 DOI: 10.1111/joa.13403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/27/2022] Open
Abstract
Spheniscus urbinai represents one of four extinct Spheniscus species from the Cenozoic of southern South America, known from several poorly described diversely complete skulls and postcranial elements. Here, we present a review of the cranial osteology of all known specimens (collected in Argentina, Chile, and Peru), including a paleoneurological analysis using CT scans, and an exploration of its cranial pneumaticity compared to other extinct and living seabirds. Our results show that among Spheniscus species, S. urbinai exhibits slightly greater cranial pneumaticity than the living species. Additionally, we confirm previous findings which indicate that the marked reduction of cranial pneumaticity-which is characteristic of living penguins-occurred early during the Eocene (as observed in the Antarctic penguin MLP 12-I-20-1, but not in the coeval Anthropornis).
Collapse
Affiliation(s)
- Carolina Acosta Hospitaleche
- CONICET, División Paleontología de Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ariana Paulina-Carabajal
- Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche, Argentina
| | - Roberto Yury-Yáñez
- Laboratorio de Zoología de Vertebrados, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Watanabe J, Field DJ, Matsuoka H. Wing Musculature Reconstruction in Extinct Flightless Auks ( Pinguinus and Mancalla) Reveals Incomplete Convergence with Penguins (Spheniscidae) Due to Differing Ancestral States. Integr Org Biol 2020; 3:obaa040. [PMID: 34258512 PMCID: PMC8271220 DOI: 10.1093/iob/obaa040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite longstanding interest in convergent evolution, factors that result in deviations from fully convergent phenotypes remain poorly understood. In birds, the evolution of flightless wing-propelled diving has emerged as a classic example of convergence, having arisen in disparate lineages including penguins (Sphenisciformes) and auks (Pan-Alcidae, Charadriiformes). Nevertheless, little is known about the functional anatomy of the wings of flightless auks because all such taxa are extinct, and their morphology is almost exclusively represented by skeletal remains. Here, in order to re-evaluate the extent of evolutionary convergence among flightless wing-propelled divers, wing muscles and ligaments were reconstructed in two extinct flightless auks, representing independent transitions to flightlessness: Pinguinus impennis (a crown-group alcid), and Mancalla (a stem-group alcid). Extensive anatomical data were gathered from dissections of 12 species of extant charadriiforms and 4 aequornithine waterbirds including a penguin. The results suggest that the wings of both flightless auk taxa were characterized by an increased mechanical advantage of wing elevator/retractor muscles, and decreased mobility of distal wing joints, both of which are likely advantageous for wing-propelled diving and parallel similar functional specializations in penguins. However, the conformations of individual muscles and ligaments underlying these specializations differ markedly between penguins and flightless auks, instead resembling those in each respective group's close relatives. Thus, the wings of these flightless wing-propelled divers can be described as convergent as overall functional units, but are incompletely convergent at lower levels of anatomical organization-a result of retaining differing conditions from each group's respective volant ancestors. Detailed investigations such as this one may indicate that, even in the face of similar functional demands, courses of phenotypic evolution are dictated to an important degree by ancestral starting points.
Collapse
Affiliation(s)
- Junya Watanabe
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.,Department of Geology and Mineralogy, Kyoto University, Sakyoku Kitashirakawa Oiwakecho, Kyoto, 606-8502, Japan
| | - Daniel J Field
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Hiroshige Matsuoka
- Department of Geology and Mineralogy, Kyoto University, Sakyoku Kitashirakawa Oiwakecho, Kyoto, 606-8502, Japan
| |
Collapse
|
5
|
Early CM, Iwaniuk AN, Ridgely RC, Witmer LM. Endocast structures are reliable proxies for the sizes of corresponding regions of the brain in extant birds. J Anat 2020; 237:1162-1176. [PMID: 32892372 DOI: 10.1111/joa.13285] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Endocasts are increasingly relied upon to examine avian brain evolution because they can be used across extant and extinct species. The endocasts of birds appear to be relatively faithful representatives of the external morphology of their brains, but it is unclear how well the size of a surface feature visible on endocasts reflects the volume of the underlying brain region. The optic lobe and the Wulst are two endocast structures that are clearly visible on the external surface of avian endocasts. As they overlie two major visual regions of the brain, the optic tectum and hyperpallium, the surface areas of the optic lobe and Wulst, respectively, are often used to infer visual abilities. To determine whether the surface area of these features reflects the volume of the underlying brain regions, we compared the surface areas of the optic lobes and Wulsts from digital endocasts with the volumes of the optic tecta and hyperpallia from the literature or measured from histological series of brains of the same species. Regression analyses revealed strong, statistically significant correlations between the volumes of the brain regions and the surface areas of the overlying endocast structures. In other words, the size of the hyperpallium and optic tectum can be reliably inferred from the surface areas of the Wulst and optic lobe, respectively. This validation opens the possibility of estimating brain-region volumes for extinct species in order to gain better insights in their visual ecology. It also emphasizes the importance of adopting a quantitative approach to the analysis of endocasts in the study of brain evolution.
Collapse
Affiliation(s)
- Catherine M Early
- Biology Department, Science Museum of Minnesota, Saint Paul, MN, USA.,Department of Biological Sciences, Ohio University, Athens, OH, USA.,Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ryan C Ridgely
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
6
|
Mayr G, Goedert JL, De Pietri VL, Scofield RP. Comparative osteology of the penguin‐like mid‐Cenozoic Plotopteridae and the earliest true fossil penguins, with comments on the origins of wing‐propelled diving. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gerald Mayr
- Ornithological Section Senckenberg Research Institute and Natural History Museum Frankfurt Frankfurt am Main Germany
| | - James L. Goedert
- Burke Museum of Natural History and Culture University of Washington Seattle WA USA
| | | | | |
Collapse
|
7
|
Knoll F, Kawabe S. Avian palaeoneurology: Reflections on the eve of its 200th anniversary. J Anat 2020; 236:965-979. [PMID: 31999834 PMCID: PMC7219626 DOI: 10.1111/joa.13160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
In birds, the brain (especially the telencephalon) is remarkably developed, both in relative volume and complexity. Unlike in most early-branching sauropsids, the adults of birds and other archosaurs have a well-ossified neurocranium. In contrast to the situation in most of their reptilian relatives but similar to what can be seen in mammals, the brains of birds fit closely to the endocranial cavity so that their major external features are reflected in the endocasts. This makes birds a highly suitable group for palaeoneurological investigations. The first observation about the brain in a long-extinct bird was made in the first quarter of the 19th century. However, it was not until the 2000s and the application of modern imaging technologies that avian palaeoneurology really took off. Understanding how the mode of life is reflected in the external morphology of the brains of birds is but one of several future directions in which avian palaeoneurological research may extend. Although the number of fossil specimens suitable for palaeoneurological explorations is considerably smaller in birds than in mammals and will very likely remain so, the coming years will certainly witness a momentous strengthening of this rapidly growing field of research at the overlap between ornithology, palaeontology, evolutionary biology and neurosciences.
Collapse
Affiliation(s)
- Fabien Knoll
- ARAID‐Fundación Conjunto Paleontológico de Teruel‐DinópolisTeruelSpain
- Departamento de PaleobiologíaMuseo Nacional de Ciencias Naturales‐CSICMadridSpain
| | - Soichiro Kawabe
- Institute of Dinosaur ResearchFukui Prefectural UniversityFukuiJapan
- Fukui Prefectural Dinosaur MuseumFukuiJapan
| |
Collapse
|
8
|
Beyond Endocasts: Using Predicted Brain-Structure Volumes of Extinct Birds to Assess Neuroanatomical and Behavioral Inferences. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12010034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The shape of the brain influences skull morphology in birds, and both traits are driven by phylogenetic and functional constraints. Studies on avian cranial and neuroanatomical evolution are strengthened by data on extinct birds, but complete, 3D-preserved vertebrate brains are not known from the fossil record, so brain endocasts often serve as proxies. Recent work on extant birds shows that the Wulst and optic lobe faithfully represent the size of their underlying brain structures, both of which are involved in avian visual pathways. The endocasts of seven extinct birds were generated from microCT scans of their skulls to add to an existing sample of endocasts of extant birds, and the surface areas of their Wulsts and optic lobes were measured. A phylogenetic prediction method based on Bayesian inference was used to calculate the volumes of the brain structures of these extinct birds based on the surface areas of their overlying endocast structures. This analysis resulted in hyperpallium volumes of five of these extinct birds and optic tectum volumes of all seven extinct birds. Phylogenetic ANCOVA (phyANCOVA) were performed on regressions of the brain-structure volumes and endocast structure surface areas on various brain size metrics to determine if the relative sizes of these structures in any extinct birds were significantly different from those of the extant birds in the sample. Phylogenetic ANCOVA indicated that no extinct birds studied had relative hyperpallial volumes that were significantly different from the extant sample, nor were any of their optic tecta relatively hypertrophied. The optic tectum of Dinornis robustus was significantly smaller relative to brain size than any of the extant birds in our sample. This study provides an analytical framework for testing the hypotheses of potential functional behavioral capabilities of other extinct birds based on their endocasts.
Collapse
|
9
|
Gold MEL, Watanabe A. Flightless birds are not neuroanatomical analogs of non-avian dinosaurs. BMC Evol Biol 2018; 18:190. [PMID: 30545287 PMCID: PMC6293530 DOI: 10.1186/s12862-018-1312-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/28/2018] [Indexed: 12/02/2022] Open
Abstract
Background In comparative neurobiology, major transitions in behavior are thought to be associated with proportional size changes in brain regions. Bird-line theropod dinosaurs underwent a drastic locomotory shift from terrestrial to volant forms, accompanied by a suite of well-documented postcranial adaptations. To elucidate the potential impact of this locomotor shift on neuroanatomy, we first tested for a correlation between loss of flight in extant birds and whether the brain morphology of these birds resembles that of their flightless, non-avian dinosaurian ancestors. We constructed virtual endocasts of the braincase for 80 individuals of non-avian and avian theropods, including 25 flying and 19 flightless species of crown group birds. The endocasts were analyzed using a three-dimensional (3-D) geometric morphometric approach to assess changes in brain shape along the dinosaur-bird transition and secondary losses of flight in crown-group birds (Aves). Results While non-avian dinosaurs and crown-group birds are clearly distinct in endocranial shape, volant and flightless birds overlap considerably in brain morphology. Phylogenetically informed analyses show that locomotory mode does not significantly account for neuroanatomical variation in crown-group birds. Linear discriminant analysis (LDA) also indicates poor predictive power of neuroanatomical shape for inferring locomotory mode. Given current sampling, Archaeopteryx, typically considered the oldest known bird, is inferred to be terrestrial based on its endocranial morphology. Conclusion The results demonstrate that loss of flight does not correlate with an appreciable amount of neuroanatomical changes across Aves, but rather is partially constrained due to phylogenetic inertia, evident from sister taxa having similarly shaped endocasts. Although the present study does not explicitly test whether endocranial changes along the dinosaur-bird transition are due to the acquisition of powered flight, the prominent relative expansion of the cerebrum, in areas associated with flight-related cognitive capacity, suggests that the acquisition of flight may have been an important initial driver of brain shape evolution in theropods. Electronic supplementary material The online version of this article (10.1186/s12862-018-1312-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Eugenia Leone Gold
- Biology Department, Suffolk University, Boston, MA, 02108, USA. .,Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, 11779, USA. .,Division of Paleontology, American Museum of Natural History, New York, NY, 10024, USA.
| | - Akinobu Watanabe
- Division of Paleontology, American Museum of Natural History, New York, NY, 10024, USA.,Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA.,Life Sciences Department Vertebrates Division, Natural History Museum, London, SW7 5BD, UK
| |
Collapse
|
10
|
Pritchard AC, Nesbitt SJ. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170499. [PMID: 29134065 PMCID: PMC5666248 DOI: 10.1098/rsos.170499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda.
Collapse
Affiliation(s)
- Adam C. Pritchard
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06520-8109, USA
| | | |
Collapse
|