1
|
Lin AH, Slater CA, Martinez CJ, Eppell SJ, Yu SM, Weiss JA. Collagen fibrils from both positional and energy-storing tendons exhibit increased amounts of denatured collagen when stretched beyond the yield point. Acta Biomater 2023; 155:461-470. [PMID: 36400348 PMCID: PMC9805521 DOI: 10.1016/j.actbio.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Collagen molecules are the base structural unit of tendons, which become denatured during mechanical overload. We recently demonstrated that during tendon stretch, collagen denaturation occurs at the yield point of the stress-strain curve in both positional and energy-storing tendons. We were interested in investigating how this load is transferred throughout the collagen hierarchy, and sought to determine the onset of collagen denaturation when collagen fibrils are stretched. Fibrils are one level above the collagen molecule in the collagen hierarchy, allowing more direct probing of the effect of strain on collagen molecules. We isolated collagen fibrils from both positional and energy-storing tendon types and stretched them using a microelectromechanical system device to various levels of strain. We stained the fibrils with fluorescently labeled collagen hybridizing peptides that specifically bind to denatured collagen, and examined whether samples stretched beyond the yield point of the stress-strain curve exhibited increased amounts of denatured collagen. We found that collagen denaturation in collagen fibrils from both tendon types occurs at the yield point. Greater amounts of denatured collagen were found in post-yield positional fibrils than in energy-storing fibrils. This is despite a greater yield strain and yield stress in fibrils from energy-storing tendons compared to positional tendons. Interestingly, the peak modulus of collagen fibrils from both tendon types was the same. These results are likely explained by the greater crosslink density found in energy-storing tendons compared to positional tendons. The insights gained from this study could help management of tendon and other musculoskeletal injuries by targeting collagen molecular damage at the fibril level. STATEMENT OF SIGNIFICANCE: When tendons are stretched or torn, this can lead to collagen denaturation (damage). Depending on their biomechanical function, tendons are considered positional or energy-storing with different crosslink profiles. By stretching collagen fibrils instead of fascicles from both tendon types, we can more directly examine the effect of tensile stretch on the collagen molecule in tendons. We found that regardless of tendon type, collagen denaturation in fibrils occurs when they are stretched beyond the yield point of the stress-strain curve. This provides insight into how load affects different tendon sub-structures during tendon injuries and failure, which will help clinicians and researchers understand mechanisms of injuries and potentially target collagen molecular damage as a treatment strategy, leading to improved clinical outcomes following injury.
Collapse
Affiliation(s)
- Allen H Lin
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States
| | - Christopher A Slater
- Department of Biomedical Engineering, Case Western Reserve University, United States
| | - Callie-Jo Martinez
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States
| | - Steven J Eppell
- Department of Biomedical Engineering, Case Western Reserve University, United States
| | - S Michael Yu
- Department of Biomedical Engineering, University of Utah, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, United States
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States; Department of Orthopaedics, University of Utah, United States.
| |
Collapse
|
2
|
Thornton LH, Dick TJM, Bennett MB, Clemente CJ. Understanding Australia’s unique hopping species: a comparative review of the musculoskeletal system and locomotor biomechanics in Macropodoidea. AUST J ZOOL 2022. [DOI: 10.1071/zo21048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Kangaroos and other macropodoids stand out among mammals for their unusual hopping locomotion and body shape. This review examines the scaling of hind- and forelimb bones, and the primary ankle extensor muscles and tendons. We find that the scaling of the musculoskeletal system is sensitive to the phylogenetic context. Tibia length increases with positive allometry among most macropodoids, but negative allometry in eastern grey kangaroos and isometry in red kangaroos. Femur length decreases with stronger negative allometry in eastern grey and red kangaroos than among other macropodoids. Muscle masses scale with negative allometry in western grey kangaroos and with isometry in red kangaroos, compared to positive allometry in other macropodoids. We further summarise the work on the hopping gait, energetics in macropodoids, and stresses in the musculoskeletal system in an evolutionary context, to determine what trade-offs may limit locomotor performance in macropodoids. When large kangaroos hop, they do not increase oxygen consumption with speed, unlike most mammals, including small hopping species. We conclude that there is not enough information to isolate the biomechanical factors that make large kangaroos so energy efficient. We identify key areas for further research to fill these gaps.
Collapse
|
3
|
Wagstaffe AY, O'Driscoll AM, Kunz CJ, Rayfield EJ, Janis CM. Divergent locomotor evolution in "giant" kangaroos: Evidence from foot bone bending resistances and microanatomy. J Morphol 2022; 283:313-332. [PMID: 34997777 PMCID: PMC9303454 DOI: 10.1002/jmor.21445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022]
Abstract
The extinct sthenurine (giant, short-faced) kangaroos have been proposed to have a different type of locomotor behavior to extant (macropodine) kangaroos, based both on physical limitations (the size of many exceeds the proposed limit for hopping) and anatomical features (features of the hind limb anatomy suggestive of weight-bearing on one leg at a time). Here, we use micro computerised tomography (micro-CT) scans of the pedal bones of six kangaroos, three sthenurine, and three macropodine, ranging from ~50 to 150 kg, to investigate possible differences in bone resistances to bending and cortical bone distribution that might relate to differences in locomotion. Using second moment of area analysis, we show differences in resistance to bending between the two subfamilies. Distribution of cortical bone shows that sthenurines had less resistant calcaneal tubers, implying a different foot posture during locomotion, and the long foot bones were more resistant to the medial bending stresses. These differences were the most pronounced between Pleistocene monodactyl sthenurines (Sthenurus stirlingi and Procoptodon browneorum) and the two species of Macropus (the extant M. giganteus and the extinct M. cf. M. titan) and support the hypothesis that these derived sthenurines employed bipedal striding. The Miocene sthenurine Hadronomas retains some more macropodine-like features of bone resistance to bending, perhaps reflecting its retention of the fifth pedal digit. The Pleistocene macropodine Protemnodon has a number of unique features, possibly indicative of a type of locomotion unlike the other kangaroos.
Collapse
Affiliation(s)
- Amber Y Wagstaffe
- Department of Earth Sciences, University of Bristol, Bristol, UK.,Energy and Environment Institute, University of Hull, Hull, UK
| | - Adrian M O'Driscoll
- Department of Earth Sciences, University of Bristol, Bristol, UK.,Center for Anatomical and Human Studies, Hull York Medical School, University of York, York, UK
| | - Callum J Kunz
- Department of Earth Sciences, University of Bristol, Bristol, UK
| | - Emily J Rayfield
- Department of Earth Sciences, University of Bristol, Bristol, UK
| | - Christine M Janis
- Department of Earth Sciences, University of Bristol, Bristol, UK.,Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Jones B, Martín-Serra A, Rayfield EJ, Janis CM. Distal Humeral Morphology Indicates Locomotory Divergence in Extinct Giant Kangaroos. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractPrevious studies of the morphology of the humerus in kangaroos showed that the shape of the proximal humerus could distinguish between arboreal and terrestrial taxa among living mammals, and that the extinct “giant” kangaroos (members of the extinct subfamily Sthenurinae and the extinct macropodine genus Protemnodon) had divergent humeral anatomies from extant kangaroos. Here, we use 2D geometric morphometrics to capture the shape of the distal humerus in a range of extant and extinct marsupials and obtain similar results: sthenurines have humeral morphologies more similar to arboreal mammals, while large Protemnodon species (P. brehus and P. anak) have humeral morphologies more similar to terrestrial quadrupedal mammals. Our results provide further evidence for prior hypotheses: that sthenurines did not employ a locomotor mode that involved loading the forelimbs (likely employing bipedal striding as an alternative to quadrupedal or pentapedal locomotion at slow gaits), and that large Protemnodon species were more reliant on quadrupedal locomotion than their extant relatives. This greater diversity of locomotor modes among large Pleistocene kangaroos echoes studies that show a greater diversity in other aspects of ecology, such as diet and habitat occupancy.
Collapse
|
5
|
Munn AJ, Snelling EP, Taggart DA, Clauss M. Scaling at different ontogenetic stages: Gastrointestinal tract contents of a marsupial foregut fermenter, the western grey kangaroo Macropus fuliginosus melanops. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111100. [PMID: 34737157 DOI: 10.1016/j.cbpa.2021.111100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Prominent ontogenetic changes of the gastrointestinal tract (GIT) should occur in mammals whose neonatal diet of milk differs from that of adults, and especially in herbivores (as vegetation is particularly distinct from milk), and even more so in foregut fermenters, whose forestomach only becomes functionally relevant with vegetation intake. Due to the protracted lactation in marsupials, ontogenetic differences can be particularly well investigated in this group. Here, we report body mass (BM) scaling relationships of wet GIT content mass in 28 in-pouch young (50 g to 3 kg) and 15 adult (16-70 kg) western grey kangaroos Macropus fuliginosus melanops. Apart from the small intestinal contents, in-pouch young and adults did not differ in the scaling exponents ('slope' in log-log plots) but did differ in the scaling factor ('intercept'), with an implied substantial increase in wet GIT content mass during the out-of-pouch juvenile period. In contrast to forestomach contents, caecum contents were elevated in juveniles still in the pouch, suggestive of fermentative digestion of milk and intestinal secretion residues, particularly in the caecum. The substantial increase in GIT contents (from less than 1 to 10-20% of BM) was associated mainly with the increase in forestomach contents (from 25 to 80% of total GIT contents) and a concomitant decrease in small intestine contents (from 50 to 8%), emphasizing the shifting relevance of auto-enzymatic and allo-enzymatic (microbial) digestion. There was a concomitant increase in the contents-to-tissue ratio of the fermentation chambers (forestomach and caecum), but this ratio generally did not change for the small intestine. Our study not only documents significant ontogenetic changes in digestive morpho-physiology, but also exemplifies the usefulness of intraspecific allometric analyses for quantifying these changes.
Collapse
Affiliation(s)
- Adam J Munn
- Laboratory for Ecological and Applied Physiology, Otford, NSW 2508, Australia.
| | - Edward P Snelling
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa; Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
| | - David A Taggart
- Department of Ecology and Environmental Science, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
6
|
Ontogenetic scaling of the gastrointestinal tract of a marsupial foregut fermenter, the western grey kangaroo Macropus fuliginosus melanops. J Comp Physiol B 2021; 191:371-383. [PMID: 33491137 DOI: 10.1007/s00360-020-01333-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/07/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
As an animal grows, the relative sizes of their organs may grow proportionately or disproportionately, depending on ontogenetic changes in function. If organ growth is proportional (isometric), then the exponent of the scaling equation is 1.0. Relative decreases or increases in size result in exponents less than 1 (hypoallometric) or greater than 1 (hyperallometric). Thus, the empirical exponent can indicate potential changes in function. The entire gastrointestinal tract (GIT) of the foregut-fermenting western grey kangaroo Macropus fuliginosus melanops exhibited biphasic allometry across five orders of magnitude body mass (Mb; 52.0 g-70.5 kg). Prior to weaning at around 12 kg Mb, the entire empty GIT mass scaled with hyperallometry (Mb1.13), shifting to hypoallometry (Mb0.80) post-weaning. In addition, there were varying patterns of hyper-, hypo-, and isometric scaling for select GIT organs, with several displaying phase shifts associated with major life-history events, specifically around exit from the maternal pouch and around weaning. Mass of the kangaroo forestomach, the main fermentation site, scaled with hyperallometry (Mb1.16) before the stage of increased vegetation intake, and possibly after this stage (Mb1.12; P = 0.07), accompanied by a higher scaling factor (elevation of the curve) probably associated with more muscle for processing fibrous vegetation. The acid hindstomach mass showed hyperallometry (Mb1.15) before weaning, but hypoallometry (Mb 0.58) post-weaning, presumably associated with decreasing intake of milk. Small intestine mass and length each scaled isometrically throughout ontogeny, with no discernible breakpoints at any life-history stage. The caecum and colon mass were steeply hyperallometric early in-pouch life (Mb1.59-1.66), when the young were ectothermic, hairless, and supported solely by milk. After around 295 g Mb, caecum mass remained hyperallometric (Mb1.14), possibly supporting its early development as a nidus for microbial populations to provide for secondary fermentation in this organ after the young transition from milk to vegetation.
Collapse
|
7
|
Veiga GN, Biewener AA, Fuller A, van de Ven TMFN, McGowan CP, Panaino W, Snelling EP. Functional morphology of the ankle extensor muscle-tendon units in the springhare Pedetes capensis shows convergent evolution with macropods for bipedal hopping locomotion. J Anat 2020; 237:568-578. [PMID: 32584456 DOI: 10.1111/joa.13214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/20/2020] [Accepted: 04/20/2020] [Indexed: 11/29/2022] Open
Abstract
This study assesses the functional morphology of the ankle extensor muscle-tendon units of the springhare Pedetes capensis, an African bipedal hopping rodent, to test for convergent evolution with the Australian bipedal hopping macropods. We dissect and measure the gastrocnemius, soleus, plantaris, and flexor digitorum longus in 10 adult springhares and compare them against similar-sized macropods using phylogenetically informed scaling analyses. We show that springhares align reasonably well with macropod predictions, being statistically indistinguishable with respect to the ankle extensor mean weighted muscle moment arm (1.63 vs. 1.65 cm, respectively), total muscle mass (41.1 vs. 29.2 g), total muscle physiological cross-sectional area (22.9 vs. 19.3 cm2 ), mean peak tendon stress (26.2 vs. 35.2 MPa), mean tendon safety factor (4.7 vs. 3.6), and total tendon strain energy return capacity (1.81 vs. 1.82 J). However, total tendon cross-sectional area is significantly larger in springhares than predicted for a similar-sized macropod (0.26 vs. 0.17 cm2 , respectively), primarily due to a greater plantaris tendon thickness (0.084 vs. 0.048 cm2 ), and secondarily because the soleus muscle-tendon unit is present in springhares but is vestigial in macropods. The overall similarities between springhares and macropods indicate that evolution has favored comparable lower hindlimb body plans for bipedal hopping locomotion in the two groups of mammals that last shared a common ancestor ~160 million years ago. The springhare's relatively thick plantaris tendon may facilitate rapid transfer of force from muscle to skeleton, enabling fast and accelerative hopping, which could help to outpace and outmaneuver predators.
Collapse
Affiliation(s)
- Gabriela N Veiga
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew A Biewener
- Concord Field Station, Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Bedford, MA, USA
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Tanja M F N van de Ven
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Craig P McGowan
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, ID, USA
| | - Wendy Panaino
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Edward P Snelling
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
8
|
Impact of Different Developmental Instars on Locusta migratoria Jumping Performance. Appl Bionics Biomech 2020; 2020:2797486. [PMID: 32296466 PMCID: PMC7136764 DOI: 10.1155/2020/2797486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/18/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022] Open
Abstract
Ontogenetic locomotion research focuses on the evolution of locomotion behavior in different developmental stages of a species. Unlike vertebrates, ontogenetic locomotion in invertebrates is poorly investigated. Locusts represent an outstanding biological model to study this issue. They are hemimetabolous insects and have similar aspects and behaviors in different instars. This research is aimed at studying the jumping performance of Locusta migratoria over different developmental instars. Jumps of third instar, fourth instar, and adult L. migratoria were recorded through a high-speed camera. Data were analyzed to develop a simplified biomechanical model of the insect: the elastic joint of locust hind legs was simplified as a torsional spring located at the femur-tibiae joint as a semilunar process and based on an energetic approach involving both locomotion and geometrical data. A simplified mathematical model evaluated the performances of each tested jump. Results showed that longer hind leg length, higher elastic parameter, and longer takeoff time synergistically contribute to a greater velocity and energy storing/releasing in adult locusts, if compared to young instars; at the same time, they compensate possible decreases of the acceleration due to the mass increase. This finding also gives insights for advanced bioinspired jumping robot design.
Collapse
|
9
|
Proximal Humerus Morphology Indicates Divergent Patterns of Locomotion in Extinct Giant Kangaroos. J MAMM EVOL 2020. [DOI: 10.1007/s10914-019-09494-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractSthenurine kangaroos, extinct “giant kangaroos” known predominantly from the Plio-Pleistocene, have been proposed to have used bipedal striding as a mode of locomotion, based on the morphology of their hind limbs. However, sthenurine forelimb morphology has not been considered in this context, and has important bearing as to whether these kangaroos employed quadrupedal or pentapedal locomotion as a slow gait, as in extant kangaroos. Study of the correlation of morphology of the proximal humerus in a broad range of therian mammals shows that humeral morphology is indicative of the degree of weight-bearing on the forelimbs during locomotion, with terrestrial species being distinctly different from arboreal ones. Extant kangaroos have a proximal humeral morphology similar to extant scansorial (semi-arboreal) mammals, but sthenurine humeri resemble those of suspensory arboreal taxa, which rarely bear weight on their forelimbs, supporting the hypothesis that they used bipedal striding rather than quadrupedal locomotion at slow gaits. The humeral morphology of the enigmatic extinct “giant wallaby,” Protemnodon, may be indicative of a greater extent of quadrupedal locomotion than in extant kangaroos.
Collapse
|
10
|
Channon SB, Young IS, Cordner B, Swann N. Ontogenetic scaling of pelvic limb muscles, tendons and locomotor economy in the ostrich ( Struthio camelus). ACTA ACUST UNITED AC 2019; 222:jeb.182741. [PMID: 31350301 DOI: 10.1242/jeb.182741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/23/2019] [Indexed: 01/14/2023]
Abstract
In rapidly growing animals there are numerous selective pressures and developmental constraints underpinning the ontogenetic development of muscle-tendon morphology and mechanical properties. Muscle force generating capacity, tendon stiffness, elastic energy storage capacity and efficiency were calculated from muscle and tendon morphological parameters and in vitro tendon mechanical properties obtained from a growth series of ostrich cadavers. Ontogenetic scaling relationships were established using reduced major axis regression analysis. Ostrich pelvic limb muscle mass and cross-sectional area broadly scaled with positive allometry, indicating maintained or relatively greater capacity for maximum isometric force generation in larger animals. The length of distal limb tendons was found to scale with positive allometry in several tendons associated with antigravity support and elastic energy storage during locomotion. Distal limb tendon stiffness scaled with negative allometry with respect to body mass, with tendons being relatively more compliant in larger birds. Tendon material properties also appeared to be size-dependent, suggesting that the relative increased compliance of tendons in larger ostriches is due in part to compensatory distortions in tendon material properties during maturation and development, not simply from ontogenetic changes in tendon geometry. Our results suggest that the previously reported increase in locomotor economy through ontogeny in the ostrich is due to greater potential for elastic energy storage with increasing body size. In fact, the rate of this increase may be somewhat greater than the conservative predictions of previous studies, thus illustrating the biological importance of elastic tendon structures in adult ostriches.
Collapse
Affiliation(s)
- Sarah B Channon
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Iain S Young
- Institute of Integrative Biology, Department of Functional and Comparative Genomics, University of Liverpool, Liverpool L69 7ZB, UK
| | - Beckie Cordner
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Nicola Swann
- Nicola Swann, Department of Applied and Human Sciences, Faculty of Science, Engineering and Computing, Kingston University London, Kingston-on-Thames KT1 2EE, UK
| |
Collapse
|
11
|
Doube M, Felder AA, Chua MY, Lodhia K, Kłosowski MM, Hutchinson JR, Shefelbine SJ. Limb bone scaling in hopping macropods and quadrupedal artiodactyls. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180152. [PMID: 30473802 PMCID: PMC6227981 DOI: 10.1098/rsos.180152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
Bone adaptation is modulated by the timing, direction, rate and magnitude of mechanical loads. To investigate whether frequent slow, or infrequent fast, gaits could dominate bone adaptation to load, we compared scaling of the limb bones from two mammalian herbivore clades that use radically different high-speed gaits, bipedal hopping (suborder Macropodiformes; kangaroos and kin) and quadrupedal galloping (order Artiodactyla; goats, deer and kin). Forelimb and hindlimb bones were collected from 20 artiodactyl and 15 macropod species (body mass M 1.05-1536 kg) and scanned in computed tomography or X-ray microtomography. Second moment of area (I max) and bone length (l) were measured. Scaling relations (y = axb ) were calculated for l versus M for each bone and for I max versus M and I max versus l for every 5% of length. I max versus M scaling relationships were broadly similar between clades despite the macropod forelimb being nearly unloaded, and the hindlimb highly loaded, during bipedal hopping. I max versus l and l versus M scaling were related to locomotor and behavioural specializations. Low-intensity loads may be sufficient to maintain bone mass across a wide range of species. Occasional high-intensity gaits might not break through the load sensitivity saturation engendered by frequent low-intensity gaits.
Collapse
Affiliation(s)
- Michael Doube
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Skeletal Biology Group, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Alessandro A. Felder
- Skeletal Biology Group, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Melissa Y. Chua
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Kalyani Lodhia
- Skeletal Biology Group, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | | | - John R. Hutchinson
- Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Sandra J. Shefelbine
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Department of Mechanical and Industrial Engineering, Northeastern University, 334 Snell Engineering Center, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|