1
|
Ziadi-Künzli F, Maeda K, Puchenkov P, Bandi MM. Anatomical insights into fish terrestrial locomotion: A study of barred mudskipper (Periophthalmus argentilineatus) fins based on μCT 3D reconstructions. J Anat 2024; 245:593-624. [PMID: 38845054 PMCID: PMC11424826 DOI: 10.1111/joa.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/11/2024] [Accepted: 05/15/2024] [Indexed: 09/27/2024] Open
Abstract
Mudskippers are a group of extant ray-finned fishes with an amphibious lifestyle and serve as exemplars for understanding the evolution of amphibious capabilities in teleosts. A comprehensive anatomical profile of both the soft and hard tissues within their propulsive fins is essential for advancing our understanding of terrestrial locomotor adaptations in fish. Despite the ecological significance of mudskippers, detailed data on their musculoskeletal anatomy remains limited. In the present research, we utilized contrast-enhanced high-resolution microcomputed tomography (μCT) imaging to investigate the barred mudskipper, Periophthalmus argentilineatus. This technique enabled detailed reconstruction and quantification of the morphological details of the pectoral, pelvic, and caudal fins of this terrestrial mudskipper, facilitating comparison with its aquatic relatives. Our findings reveal that P. argentilineatus has undergone complex musculoskeletal adaptations for terrestrial movement, including an increase in muscle complexity and muscle volume, as well as the development of specialized structures like aponeuroses for pectoral fin extension. Skeletal modifications are also evident, with features such as a reinforced shoulder-pelvic joint and thickened fin rays. These evolutionary modifications suggest biomechanically advanced fins capable of overcoming the gravitational challenges of terrestrial habitats, indicating a strong selective advantage for these features in land-based environments. The unique musculoskeletal modifications in the fins of mudskippers like P. argentilineatus, compared with their aquatic counterparts, mark a critical evolutionary shift toward terrestrial adaptations. This study not only sheds light on the specific anatomical changes facilitating this transition but also offers broader insights into the early evolutionary mechanisms of terrestrial locomotion, potentially mirroring the transformative journey from aquatic to terrestrial life in the lineage leading to tetrapods.
Collapse
Affiliation(s)
- Fabienne Ziadi-Künzli
- Nonlinear and Non-equilibrium Physics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ken Maeda
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Pavel Puchenkov
- Scientific Computing & Data Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mahesh M Bandi
- Nonlinear and Non-equilibrium Physics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Kaliya-Perumal AK, Celik C, Carney TJ, Harris MP, Ingham PW. Genetic regulation of injury-induced heterotopic ossification in adult zebrafish. Dis Model Mech 2024; 17:dmm050724. [PMID: 38736327 DOI: 10.1242/dmm.050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
Heterotopic ossification is the inappropriate formation of bone in soft tissues of the body. It can manifest spontaneously in rare genetic conditions or as a response to injury, known as acquired heterotopic ossification. There are several experimental models for studying acquired heterotopic ossification from different sources of damage. However, their tenuous mechanistic relevance to the human condition, invasive and laborious nature and/or lack of amenability to chemical and genetic screens, limit their utility. To address these limitations, we developed a simple zebrafish injury model that manifests heterotopic ossification with high penetrance in response to clinically emulating injuries, as observed in human myositis ossificans traumatica. Using this model, we defined the transcriptional response to trauma, identifying differentially regulated genes. Mutant analyses revealed that an increase in the activity of the potassium channel Kcnk5b potentiates injury response, whereas loss of function of the interleukin 11 receptor paralogue (Il11ra) resulted in a drastically reduced ossification response. Based on these findings, we postulate that enhanced ionic signalling, specifically through Kcnk5b, regulates the intensity of the skeletogenic injury response, which, in part, requires immune response regulated by Il11ra.
Collapse
Affiliation(s)
- Arun-Kumar Kaliya-Perumal
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive 636921, Singapore
| | - Cenk Celik
- Department of Genetics, Evolution and Environment, Genetics Institute, University College London, London WC1E 6BT, UK
| | - Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive 636921, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos 138673, Singapore
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive 636921, Singapore
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
3
|
Ehemann NR, Meyer A, Hulsey CD. Morphological description of spontaneous pelvic fin loss in a neotropical cichlid fish. J Morphol 2024; 285:e21663. [PMID: 38100744 DOI: 10.1002/jmor.21663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Pelvic fins are a characteristic structure of the vertebrate Bauplan. Yet, pelvic fin loss has occurred repeatedly across a wide diversity of other lineages of tetrapods and at least 48 times in teleost fishes. This pelvic finless condition is often associated with other morphological features such as body elongation, loss of additional structures, and bilateral asymmetry. However, despite the remarkable diversity in the several thousand cichlid fish species, none of them are characterized by the complete absence of pelvic fins. Here, we examined the musculoskeletal structure and associated bilateral asymmetry in Midas cichlids (Amphilophus cf. citrinellus) that lost their pelvic fins spontaneously in the laboratory. Due to this apparent mutational loss of the pelvic girdle and fins, the external and internal anatomy are described in a series of "normal" Midas individuals and their pelvic finless sibling tankmates. First, other traits associated with teleost pelvic fin loss, the genetic basis of pelvic fin loss, and the potential for pleiotropic effects of these genes on other traits in teleosts were all reviewed. Using these traits as a guide, we investigated whether other morphological differences were associated with the pelvic girdle/fin loss. The mean values of the masses of muscle of the pectoral fin, fin ray numbers in the unpaired fins, and oral jaw tooth numbers did not differ between the two pelvic fin morphotypes. However, significant differences in meristic values of the paired traits assessed were observed for the same side of the body between morphotypes. Notably, bilateral asymmetry was found exclusively for the posterior lateral line scales. Finally, we found limited evidence of pleiotropic effects, such as lateral line scale numbers and fluctuating asymmetry between the Midas pelvic fin morphotypes. The fast and relatively isolated changes in the Midas cichlids suggest minor but interesting pleiotropic effects could accompany loss of cichlid pelvic fins.
Collapse
Affiliation(s)
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
4
|
Fan X, Zheng X, An T, Li X, Leung N, Zhu B, Sui T, Shi N, Fan T, Zhao Q. Light diffraction by sarcomeres produces iridescence in transmission in the transparent ghost catfish. Proc Natl Acad Sci U S A 2023; 120:e2219300120. [PMID: 36913569 PMCID: PMC10041080 DOI: 10.1073/pnas.2219300120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 03/15/2023] Open
Abstract
Despite the elaborate varieties of iridescent colors in biological species, most of them are reflective. Here we show the rainbow-like structural colors found in the ghost catfish (Kryptopterus vitreolus), which exist only in transmission. The fish shows flickering iridescence throughout the transparent body. The iridescence originates from the collective diffraction of light after passing through the periodic band structures of the sarcomeres inside the tightly stacked myofibril sheets, and the muscle fibers thus work as transmission gratings. The length of the sarcomeres varies from ~1 μm from the body neutral plane near the skeleton to ~2 μm next to the skin, and the iridescence of a live fish mainly results from the longer sarcomeres. The length of the sarcomere changes by ~80 nm as it relaxes and contracts, and the fish shows a quickly blinking dynamic diffraction pattern as it swims. While similar diffraction colors are also observed in thin slices of muscles from non-transparent species such as the white crucian carps, a transparent skin is required indeed to have such iridescence in live species. The ghost catfish skin is of a plywood structure of collagen fibrils, which allows more than 90% of the incident light to pass directly into the muscles and the diffracted light to exit the body. Our findings could also potentially explain the iridescence in other transparent aquatic species, including the eel larvae (Leptocephalus) and the icefishes (Salangidae).
Collapse
Affiliation(s)
- Xiujun Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xuezhi Zheng
- Department of Electrical Engineering, KU Leuven, LeuvenB3001, Belgium
| | - Tong An
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiuhong Li
- Shanghai Synchrotron Radiation Facility, Shanghai201204, China
| | - Nathanael Leung
- School of Mechanical Engineering Sciences, University of Surrey, SurreyGU2 7XH, UK
| | - Bin Zhu
- School of Mechanical Engineering Sciences, University of Surrey, SurreyGU2 7XH, UK
| | - Tan Sui
- School of Mechanical Engineering Sciences, University of Surrey, SurreyGU2 7XH, UK
| | - Nan Shi
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Tongxiang Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Qibin Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
5
|
Vanhaesebroucke O, Larouche O, Cloutier R. Whole-body variational modularity in the zebrafish: an inside-out story of a model species. Biol Lett 2023; 19:20220454. [PMID: 36974665 PMCID: PMC9943880 DOI: 10.1098/rsbl.2022.0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Actinopterygians are the most diversified clade of extant vertebrates. Their impressive morphological disparity bears witness to tremendous ecological diversity. Modularity, the organization of biological systems into quasi-independent anatomical/morphological units, is thought to increase evolvability of organisms and facilitate morphological diversification. Our study aims to quantify patterns of variational modularity in a model actinopterygian, the zebrafish (Danio rerio), using three-dimensional geometric morphometrics on osteological structures isolated from micro-CT scans. A total of 72 landmarks were digitized along cranial and postcranial ossified regions of 30 adult zebrafishes. Two methods were used to test modularity hypotheses, the covariance ratio and the distance matrix approach. We find strong support for two modules, one comprised paired fins and the other comprised median fins, that are best explained by functional properties of subcarangiform swimming. While the skull is tightly integrated with the rest of the body, its intrinsic integration is relatively weak supporting previous findings that the fish skull is a modular structure. Our results provide additional support for the recognition of similar hypotheses of modularity identified based on external morphology in various teleosts, and at least two variational modules are proposed. Thus, our results hint at the possibility that internal and external modularity patterns may be congruent.
Collapse
Affiliation(s)
- Olivia Vanhaesebroucke
- Laboratoire de Paléontologie et Biologie évolutive, Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| | - Olivier Larouche
- Laboratoire de Paléontologie et Biologie évolutive, Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Richard Cloutier
- Laboratoire de Paléontologie et Biologie évolutive, Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| |
Collapse
|
6
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
7
|
Tanaka Y, Miura H, Tamura K, Abe G. Morphological evolution and diversity of pectoral fin skeletons in teleosts. ZOOLOGICAL LETTERS 2022; 8:13. [PMID: 36435818 PMCID: PMC9701400 DOI: 10.1186/s40851-022-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The Teleostei class has the most species of the fishes. Members of this group have pectoral fins, enabling refined movements in the water. Although teleosts live in a diverse set of environments, the skeletal pattern of pectoral fins in teleosts is considered to show little morphological variability. Here, in order to elucidate variations in pectoral fin skeletons and to identify their evolutionary processes, we compared the pectoral fin skeletons from 27 species of teleosts. We identified several variations and a diversity of pectoral fin skeletal patterns within some teleost groups. Taken together with previous reports on teleost skeletons, our findings reveal that in the course of teleost evolution, there are a mixture of conserved and non-conserved components in the pectoral fin skeletons of teleosts, and that teleosts may have experienced the variation and conservation of the number and shape of the proximal radials, the loss of the mesocoracoid, and the change in the distal radial-fin ray relationship.
Collapse
Affiliation(s)
- Yoshitaka Tanaka
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University. Aobayama Aoba-Ku, Sendai, 980-8578, Japan.
| | - Hiroki Miura
- Asamushi Aquarium. Asamushi, Aomori, 039-3501, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University. Aobayama Aoba-Ku, Sendai, 980-8578, Japan
| | - Gembu Abe
- Division of Developmental Biology, Department of Functional Morphology, School of Life Science, Faculty of Medicine, Tottori University, Nishi-Cho 86, Yonago, 683-8503, Japan.
| |
Collapse
|
8
|
Dudley J, Paul J, Teh V, Mackenzie T, Butler T, Tolosa J, Smith R, Foley M, Dowland S, Thompson M, Whittington C. Seahorse brood pouch morphology and control of male parturition in Hippocampus abdominalis. Placenta 2022; 127:88-94. [DOI: 10.1016/j.placenta.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
|
9
|
Davenport J, Maran V, Chanet B. Does the common topknot Zeugopterus punctatus (Teleosteii: Pleuronectiformes: Scophthalmidae) use a novel Venturi-effect attachment mechanism? A testable hypothesis. JOURNAL OF FISH BIOLOGY 2021; 99:1299-1306. [PMID: 34184260 DOI: 10.1111/jfb.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Common topknots (Zeugopterus punctatus) attach to vertical rock surfaces and overhangs. It has been speculated that attachment is by a suction cup, with the median (anal, dorsal) fins providing a peripheral seal. Here the authors propose that the attachment is actually based on a Venturi effect. The rear portions of the median fins continually move in a fan-like fashion (at c. 4 cycles per second). This movement produces a tailward fluid flow that ventilates the shallow underbody space between the fish and its rocky substratum. The anterior portions of the median fins seal the space laterally, but the space is open anterior (beneath the raised head) and posterior to the sea. The mid-underbody space likely has a lower cross-sectional area than does the front intake or rear exit, so flow should be faster (and pressure lower) within it than outside, thus providing pressure gradient suction. Topknots attach to rough and heavily biofouled surfaces, presumably because the high numbers of fin rays and their associated membranes plus fine muscle control allow effective sealing. The attachment ability is shared by all members of the flatfish tribe Phrynorhombini; it can be related to anatomical peculiarities and constitutes a probable synapomorphy for this clade.
Collapse
Affiliation(s)
- John Davenport
- School of Biological, Earth and Environmental Sciences and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Vincent Maran
- DORIS (doris.ffessm.fr), Commission Nationale Environnement et Biologie Subaquatiques de la FFESSM, Lyon, France
| | - Bruno Chanet
- Département Origines et Évolution, Institut de Systématique, Évolution et Biodiversité (ISYEB), UMR7205 CNRS-MNHN-SU-EPHE, Muséum national d'Histoire naturelle, Sorbonne Université, Paris, France
| |
Collapse
|
10
|
Kryvi H, Nordvik K, Fjelldal PG, Eilertsen M, Helvik JV, Støren EN, Long JH. Heads and tails: The notochord develops differently in the cranium and caudal fin of Atlantic Salmon (Salmo salar, L.). Anat Rec (Hoboken) 2020; 304:1629-1649. [PMID: 33155751 PMCID: PMC8359264 DOI: 10.1002/ar.24562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
While it is well known that the notochord of bony fishes changes over developmental time, less is known about how it varies across different body regions. In the development of the Atlantic salmon, Salmo salar L., cranial and caudal ends of the notochord are overlaid by the formation of the bony elements of the neurocranium and caudal fin, respectively. To investigate, we describe how the notochord of the cranium and caudal fin changes from embryo to spawning adult, using light microscopy, SEM, TEM, dissection, and CT scanning. The differences are dramatic. In contrast to the abdominal and caudal regions, at the ends of the notochord vertebrae never develop. While the cranial notochord builds a tapering, unsegmented cone of chordal bone, the urostylic notochordal sheath never ossifies: adjacent, irregular bony elements form from the endoskeleton of the caudal fin. As development progresses, two previously undescribed processes occur. First, the bony cone of the cranial notochord, and its internal chordocytes, are degraded by chordoclasts, an undescribed function of the clastic cell type. Second, the sheath of the urostylic notochord creates transverse septae that partly traverse the lumen in an irregular pattern. By the adult stage, the cranial notochord is gone. In contrast, the urostylic notochord in adults is robust, reinforced with septae, covered by irregularly shaped pieces of cellular bone, and capped with an opistural cartilage that develops from the sheath of the urostylic notochord. A previously undescribed muscle, with its origin on the opistural cartilage, inserts on the lepidotrich ventral to it.
Collapse
Affiliation(s)
- Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Kari Nordvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - John H Long
- Department of Biology, Vassar College, Poughkeepsie, New York, USA
| |
Collapse
|
11
|
Siomava N, Shkil F, Diogo R. Comparative anatomy of the fin muscles of non-sarcopterygian fishes, with notes on homology and evolution. Ann Anat 2020; 230:151507. [DOI: 10.1016/j.aanat.2020.151507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022]
|
12
|
Shkil F, Siomava N, Voronezhskaya E, Diogo R. Effects of hyperthyroidism in the development of the appendicular skeleton and muscles of zebrafish, with notes on evolutionary developmental pathology (Evo-Devo-Path). Sci Rep 2019; 9:5413. [PMID: 30931985 PMCID: PMC6443675 DOI: 10.1038/s41598-019-41912-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis plays a crucial role in the metabolism, homeostasis, somatic growth and development of teleostean fishes. Thyroid hormones regulate essential biological functions such as growth and development, regulation of stress, energy expenditure, tissue compound, and psychological processes. Teleost thyroid follicles produce the same thyroid hormones as in other vertebrates: thyroxin (T4) and triiodothyronine (T3), making the zebrafish a very useful model to study hypo- and hyperthyroidism in other vertebrate taxa, including humans. Here we investigate morphological changes in T3 hyperthyroid cases in the zebrafish to better understand malformations provoked by alterations of T3 levels. In particular, we describe musculoskeletal abnormalities during the development of the zebrafish appendicular skeleton and muscles, compare our observations with those recently done by us on the normal developmental of the zebrafish, and discuss these comparisons within the context of evolutionary developmental pathology (Evo-Devo-Path), including human pathologies.
Collapse
Affiliation(s)
- Fedor Shkil
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, pr. Leninskii 33, Moscow, 119071, Russia
| | - Natalia Siomava
- Department of Anatomy, Howard University College of Medicine, 520W Street NW, 20059, Washington, DC, USA
| | - Elena Voronezhskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334, Russia
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, 520W Street NW, 20059, Washington, DC, USA.
| |
Collapse
|
13
|
Siomava N, Shkil F, Voronezhskaya E, Diogo R. Development of zebrafish paired and median fin musculature: basis for comparative, developmental, and macroevolutionary studies. Sci Rep 2018; 8:14187. [PMID: 30242203 PMCID: PMC6155031 DOI: 10.1038/s41598-018-32567-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
The model organism Dario rerio (zebrafish) is widely used in evo-devo and comparative studies. Nevertheless, little is known about the development and differentiation of the appendicular musculature in this fish. In this study, we examined the development of the muscles of all five zebrafish fin types (pectoral, pelvic, anal, dorsal and caudal). We describe the development of the muscles of these fins, including some muscles that were never mentioned in the literature, such as the interhypurales of the caudal fin. Interestingly, these caudal muscles are present in early stages but absent in adult zebrafishes. We also compare various stages of zebrafish fin muscle development with the configuration found in other extant fishes, including non-teleostean actinopterygians as well as cartilaginous fishes. The present work thus provides a basis for future developmental, comparative, evolutionary and evo-devo studies and emphasizes the importance of developmental works on muscles for a more comprehensive understanding of the origin, development and evolution of the appendicular appendages of vertebrate animals.
Collapse
Affiliation(s)
- Natalia Siomava
- Department of Anatomy, Howard University College of Medicine, 520 W Street NW, 20059, Washington, DC, USA
| | - Fedor Shkil
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, 119334, Moskva, Russia.,Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, pr. Leninskii 33, Moscow, 119071, Russia
| | - Elena Voronezhskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, 119334, Moskva, Russia
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, 520 W Street NW, 20059, Washington, DC, USA.
| |
Collapse
|