1
|
Almeida GHDR, da Silva RS, Gibin MS, Gonzaga VHDS, dos Santos H, Igleisa RP, Fernandes LA, Fernandes IC, Nesiyama TNG, Sato F, Baesso ML, Hernandes L, Rinaldi JDC, Meirelles FV, Astolfi-Ferreira CS, Ferreira AJP, Carreira ACO. Region-Specific Decellularization of Porcine Uterine Tube Extracellular Matrix: A New Approach for Reproductive Tissue-Engineering Applications. Biomimetics (Basel) 2024; 9:382. [PMID: 39056823 PMCID: PMC11274565 DOI: 10.3390/biomimetics9070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The uterine tube extracellular matrix is a key component that regulates tubal tissue physiology, and it has a region-specific structural distribution, which is directly associated to its functions. Considering this, the application of biological matrices in culture systems is an interesting strategy to develop biomimetic tubal microenvironments and enhance their complexity. However, there are no established protocols to produce tubal biological matrices that consider the organ morphophysiology for such applications. Therefore, this study aimed to establish region-specific protocols to obtain decellularized scaffolds derived from porcine infundibulum, ampulla, and isthmus to provide suitable sources of biomaterials for tissue-engineering approaches. Porcine uterine tubes were decellularized in solutions of 0.1% SDS and 0.5% Triton X-100. The decellularization efficiency was evaluated by DAPI staining and DNA quantification. We analyzed the ECM composition and structure by optical and scanning electronic microscopy, FTIR, and Raman spectroscopy. DNA and DAPI assays validated the decellularization, presenting a significative reduction in cellular content. Structural and spectroscopy analyses revealed that the produced scaffolds remained well structured and with the ECM composition preserved. YS and HEK293 cells were used to attest cytocompatibility, allowing high cell viability rates and successful interaction with the scaffolds. These results suggest that such matrices are applicable for future biotechnological approaches in the reproductive field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Raquel Souza da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Mariana Sversut Gibin
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Victória Hellen de Souza Gonzaga
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Henrique dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Rebeca Piatniczka Igleisa
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Leticia Alves Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Iorrane Couto Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Thais Naomi Gonçalves Nesiyama
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Mauro Luciano Baesso
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá, Maringá 87020-900, Brazil; (L.H.); (J.d.C.R.)
| | | | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Antonio José Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André 09040-902, Brazil
| |
Collapse
|
2
|
Seraj H, Nazari MA, Atai AA, Amanpour S, Azadi M. A Review: Biomechanical Aspects of the Fallopian Tube Relevant to its Function in Fertility. Reprod Sci 2024; 31:1456-1485. [PMID: 38472710 DOI: 10.1007/s43032-024-01479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
The fallopian tube (FT) plays a crucial role in the reproductive process by providing an ideal biomechanical and biochemical environment for fertilization and early embryo development. Despite its importance, the biomechanical functions of the FT that originate from its morphological aspects, and ultrastructural aspects, as well as the mechanical properties of FT, have not been studied nor used sufficiently, which limits the understanding of fertilization, mechanotrasduction, and mechanobiology during embryo development, as well as the replication of the FT in laboratory settings for infertility treatments. This paper reviews and revives valuable information on human FT reported in medical literature in the past five decades relevant to the biomechanical aspects of FT. In this review, we summarized the current state of knowledge concerning the morphological, ultrastructural aspects, and mechanical properties of the human FT. We also investigate the potential arising from a thorough consideration of the biomechanical functions and exploring often neglected mechanical aspects. Our investigation encompasses both macroscopic measurements (such as length, diameter, and thickness) and microscopic measurements (including the height of epithelial cells, the percentage of ciliated cells, cilia structure, and ciliary beat frequency). Our primary focus has been on healthy women of reproductive age. We have examined various measurement techniques, encompassing conventional metrology, 2D histological data as well as new spatial measurement techniques such as micro-CT.
Collapse
Affiliation(s)
- Hasan Seraj
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Ali Nazari
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
- Department of Speech and Cognition, CNRS UMR 5216, Grenoble Institute of Technology, Grenoble, France.
| | - Ali Asghar Atai
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saeid Amanpour
- Vali-E-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Azadi
- School of Engineering, College of Science and Engineering, San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
3
|
Cajas D, Guajardo E, Jara-Rosales S, Nuñez C, Vargas R, Carriel V, Campos A, Milla L, Orihuela P, Godoy-Guzman C. Molecules involved in the sperm interaction in the human uterine tube: a histochemical and immunohistochemical approach. Eur J Histochem 2023; 67. [PMID: 37052420 PMCID: PMC10141343 DOI: 10.4081/ejh.2023.3513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023] Open
Abstract
In humans, even where millions of spermatozoa are deposited upon ejaculation in the vagina, only a few thousand enter the uterine tube (UT). Sperm transiently adhere to the epithelial cells lining the isthmus reservoir, and this interaction is essential in coordinating the availability of functional spermatozoa for fertilization. The binding of spermatozoa to the UT epithelium (mucosa) occurs due to interactions between cell-adhesion molecules on the cell surfaces of both the sperm and the epithelial cell. However, in humans, there is little information about the molecules involved. The aim of this study was to perform a histological characterization of the UT focused on determining the tissue distribution and deposition of some molecules associated with cell adhesion (F-spondin, galectin-9, osteopontin, integrin αV/β3) and UT's contractile activity (TNFα-R1, TNFα-R2) in the follicular and luteal phases. Our results showed the presence of galectin-9, F-spondin, osteopontin, integrin αV/β3, TNFα-R1, and TNFα-R2 in the epithelial cells in ampullar and isthmic segments during the menstrual cycle. Our results suggest that these molecules could form part of the sperm-UT interactions. Future studies will shed light on the specific role of each of the identified molecules.
Collapse
Affiliation(s)
- David Cajas
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH), Santiago.
| | - Emanuel Guajardo
- Facultad de Química y Biología, Laboratorio de Inmunología de la Reproducción, Universidad de Santiago de Chile (USACH); Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago.
| | - Sergio Jara-Rosales
- Escuela de Obstetricia, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Sede Los Leones, Santiago; Programa de Doctorado en Enfermedades Crónicas, Universidad San Sebastián, Sede Los Leones.
| | - Claudio Nuñez
- Servicio de Ginecología y Obstetricia, Hospital San José, Santiago.
| | - Renato Vargas
- Servicio de Ginecología y Obstetricia, Hospital San José, Santiago.
| | - Victor Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, Spain; Instituto de Investigación Biosanitaria ibis.GRANADA, Granada.
| | - Antonio Campos
- Department of Histology, Tissue Engineering Group, University of Granada, Spain; Instituto de Investigación Biosanitaria ibis.GRANADA, Granada.
| | - Luis Milla
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH), Santiago.
| | - Pedro Orihuela
- Facultad de Química y Biología, Laboratorio de Inmunología de la Reproducción, Universidad de Santiago de Chile (USACH), Santiago.
| | - Carlos Godoy-Guzman
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH); Universidad de Santiago de Chile (USACH), Escuela de Medicina, Unidad de Histología, Santiago.
| |
Collapse
|
4
|
Sánchez-Porras D, Varas J, Godoy-Guzmán C, Bermejo-Casares F, San Martín S, Carriel V. Histochemical and Immunohistochemical Methods for the Identification of Proteoglycans. Methods Mol Biol 2023; 2566:85-98. [PMID: 36152244 DOI: 10.1007/978-1-0716-2675-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Proteoglycans (PGs) are non-fibrillar extracellular matrix (ECM) molecules composed by a protein core and glycosaminoglycan (GAG) chains. These molecules are present in all tissues playing essential structural, biomechanical, and biological roles. In addition, PGs can regulate cell behavior due to their versatility and ability to interact with other ECM molecules, growth factors, and cells. The distribution of PGs can be evaluated by histochemical and immunohistochemical methods. Histochemical methods aimed to provide a useful overview of the presence and distribution pattern of certain groups of PGs. In contrast, immunohistochemical procedures aimed the identification of highly specific target molecules. In this chapter we described Alcian Blue, Safranin O, and Toluidine Blue histochemical methods for the screening of PGs in tissue sections. Finally, we describe the immunohistochemical procedures for specific identification of PGs (decorin, biglycan, and versican) in formaldehyde-fixed and paraffin-embedded tissues.
Collapse
Affiliation(s)
- David Sánchez-Porras
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Juan Varas
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos Godoy-Guzmán
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - Fabiola Bermejo-Casares
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Sebastián San Martín
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Víctor Carriel
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, and Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain.
| |
Collapse
|
5
|
Ferdousy RN, Kadokawa H. Specific locations and amounts of denatured collagen and collagen-specific chaperone HSP47 in the oviducts and uteri of old cows as compared with those of heifers. Reprod Fertil Dev 2022; 34:619-632. [PMID: 35296375 DOI: 10.1071/rd21130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022] Open
Abstract
Collagen, the most abundant extra-cellular matrix in oviducts and uteri, performs critical roles in pregnancies. We hypothesised that the locations and amounts of both denatured collagen and the collagen-specific molecular chaperone 47-kDa heat shock protein (HSP47) in the oviducts and uteri of old cows are different compared with those of young heifers because of repeated pregnancies. Since detecting damaged collagen in tissues is challenging, we developed a new method that uses a denatured collagen detection reagent. Then, we compared damaged collagen in the oviducts and uteri between post-pubertal growing nulliparous heifers (22.1±1.0months old) and old multiparous cows (143.1±15.6months old). Further, we evaluated the relationship between denatured collagen and HSP47 by combining this method with fluorescence immunohistochemistry. Picro-sirius red staining showed collagen in almost all parts of the oviducts and uteri. Expectedly, damaged collagen was increased in the oviducts and uteri of old cows. However, damaged collagen and HSP47 were not located in the same area in old cows. The number of fibroblasts increased, suggesting the presence of fibrosis in the oviducts and uteri of old cows. These organs of old cows showed higher HSP47 protein amounts than those of heifers. However, the uteri, but not oviducts, of old cows had lower HSP47 mRNA amounts than those of heifers. These findings revealed the specific location and amounts of denatured collagen and HSP47 in the oviducts and uteri of old cows compared with those of heifers.
Collapse
Affiliation(s)
- Raihana Nasrin Ferdousy
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| |
Collapse
|
6
|
Renner C, Gomez C, Visetsouk MR, Taha I, Khan A, McGregor SM, Weisman P, Naba A, Masters KS, Kreeger PK. Multi-modal Profiling of the Extracellular Matrix of Human Fallopian Tubes and Serous Tubal Intraepithelial Carcinomas. J Histochem Cytochem 2022; 70:151-168. [PMID: 34866441 PMCID: PMC8777377 DOI: 10.1369/00221554211061359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent evidence supports the fimbriae of the fallopian tube as one origin site for high-grade serous ovarian cancer (HGSOC). The progression of many solid tumors is accompanied by changes in the microenvironment, including alterations of the extracellular matrix (ECM). Therefore, we sought to determine the ECM composition of the benign fallopian tube and changes associated with serous tubal intraepithelial carcinomas (STICs), precursors of HGSOC. The ECM composition of benign human fallopian tube was first defined from a meta-analysis of published proteomic datasets that identified 190 ECM proteins. We then conducted de novo proteomics using ECM enrichment and identified 88 proteins, 7 of which were not identified in prior studies (COL2A1, COL4A5, COL16A1, elastin, LAMA5, annexin A2, and PAI1). To enable future in vitro studies, we investigated the levels and localization of ECM components included in tissue-engineered models (type I, III, and IV collagens, fibronectin, laminin, versican, perlecan, and hyaluronic acid) using multispectral immunohistochemical staining of fimbriae from patients with benign conditions or STICs. Quantification revealed an increase in stromal fibronectin and a decrease in epithelial versican in STICs. Our results provide an in-depth picture of the ECM in the benign fallopian tube and identified ECM changes that accompany STIC formation. (J Histochem Cytochem XX: XXX-XXX, XXXX).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexandra Naba
- Alexandra Naba, Department of Physiology
and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Avenue,
Chicago, IL 60612, USA. E-mail:
| | | | | |
Collapse
|
7
|
Linares-Gonzalez L, Rodenas-Herranz T, Campos F, Ruiz-Villaverde R, Carriel V. Basic Quality Controls Used in Skin Tissue Engineering. Life (Basel) 2021; 11:1033. [PMID: 34685402 PMCID: PMC8541591 DOI: 10.3390/life11101033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of skin defects is often a challenging effort due to the currently limited reconstructive options. In this sense, tissue engineering has emerged as a possible alternative to replace or repair diseased or damaged tissues from the patient's own cells. A substantial number of tissue-engineered skin substitutes (TESSs) have been conceived and evaluated in vitro and in vivo showing promising results in the preclinical stage. However, only a few constructs have been used in the clinic. The lack of standardization in evaluation methods employed may in part be responsible for this discrepancy. This review covers the most well-known and up-to-date methods for evaluating the optimization of new TESSs and orientative guidelines for the evaluation of TESSs are proposed.
Collapse
Affiliation(s)
- Laura Linares-Gonzalez
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Teresa Rodenas-Herranz
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Fernando Campos
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Ricardo Ruiz-Villaverde
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Víctor Carriel
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
8
|
Souza CFC, Pires LAS, Babinski MDSD, Fonseca Junior A, Manaia JHM, Babinski MA. Organization of the fibrous connective tissue of the fallopian tubes in fertile and climacteric periods: a scanning electron microscopic and stereologic study. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:956-963. [PMID: 34646413 PMCID: PMC8493265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
The extracellular matrix (ECM) of the fallopian tubes is subject to several changes due to hormonal influences and aging. However, there is a lack of studies regarding its arrangement in older women. We aimed to analyze the organization of ECMcomponents, including collagen and elastic fibers, in the fallopian tube's ampulla from young and old women by means of scanning electron microscopical and stereological methods. Twenty-one samples were analyzed: 12 from female cadavers in a fertile age (G1) and 9 from the climacteric period (G2). Masson's trichrome stain was used to observe collagen and smooth muscle, while Weigert's Fuchsin-Resorcin was employed to observe elastic fibers. Statistical analysis was performed by the Wilcoxon-Mann-Whitney test with the aid ofthe R© software. The tissue was also fixed for scanning electron microscopic analysis in a modified Karnovsky solution and the three-dimensional organization of fibrous connective tissue was observed and compared. Statistically significant differences (P < 0.01) were found in all stereologic comparisons of the extracellular matrix between the groups, which revealed a higher volumetric density of the fibrous tissue in the climacteric group. Scanning electron microscopy showed degenerative alterations of extracellular matrix. According to our results, aging caused significant changes to the elements of the extracellular matrix and the smooth muscle of the fallopian tubes.
Collapse
Affiliation(s)
| | | | | | - Albino Fonseca Junior
- Medical Sciences Post Graduation Program, Universidade Federal Fluminense Rio de Janeiro, Brazil
| | | | - Marcio Antonio Babinski
- Medical Sciences Post Graduation Program, Universidade Federal Fluminense Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Cadena I, Chen A, Arvidson A, Fogg KC. Biomaterial strategies to replicate gynecological tissue. Biomater Sci 2021; 9:1117-1134. [DOI: 10.1039/d0bm01240h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Properties of native tissue can inspire biomimetic in vitro models of gynecological disease.
Collapse
Affiliation(s)
- Ines Cadena
- Department of Chemical
- Biological
- and Environmental Engineering
- Oregon State University
- Corvallis
| | - Athena Chen
- Department of Pathology
- School of Medicine
- Oregon Health & Science University
- Portland
- USA
| | - Aaron Arvidson
- Department of Chemical
- Biological
- and Environmental Engineering
- Oregon State University
- Corvallis
| | - Kaitlin C. Fogg
- Department of Chemical
- Biological
- and Environmental Engineering
- Oregon State University
- Corvallis
| |
Collapse
|
10
|
Santisteban-Espejo A, Campos F, Chato-Astrain J, Durand-Herrera D, García-García O, Campos A, Martin-Piedra MA, Moral-Munoz JA. Identification of Cognitive and Social Framework of Tissue Engineering by Science Mapping Analysis. Tissue Eng Part C Methods 2019; 25:37-48. [PMID: 30526420 DOI: 10.1089/ten.tec.2018.0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
IMPACT STATEMENT This study evaluates the cognitive structure and social behavior of tissue engineering (TE) based on a science mapping analysis. Understanding the terms and topics that play a key role in the development of TE can help administrative authorities to better plan funding. Moreover, a better knowledge of collaborative networks in TE and the identification of potential new opportunities for collaboration may enhance synergies in scientific activities to implement future approaches to therapy.
Collapse
Affiliation(s)
| | - Fernando Campos
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,3 Research Institute ibs.GRANADA, Granada, Spain
| | - Jesus Chato-Astrain
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain
| | - Daniel Durand-Herrera
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain
| | - Oscar García-García
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain
| | - Antonio Campos
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,3 Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Angel Martin-Piedra
- 2 Tissue Engineering Group, Department of Histology, School of Medicine, University of Granada, Granada, Spain.,3 Research Institute ibs.GRANADA, Granada, Spain
| | - Jose Antonio Moral-Munoz
- 4 Department of Nursing and Physiotherapy, University of Cadiz, Cadiz, Spain.,5 Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), University of Cadiz, Cadiz, Spain
| |
Collapse
|
11
|
Vela-Romera A, Carriel V, Martín-Piedra MA, Aneiros-Fernández J, Campos F, Chato-Astrain J, Prados-Olleta N, Campos A, Alaminos M, Garzón I. Characterization of the human ridged and non-ridged skin: a comprehensive histological, histochemical and immunohistochemical analysis. Histochem Cell Biol 2018; 151:57-73. [PMID: 30099600 PMCID: PMC6328512 DOI: 10.1007/s00418-018-1701-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 01/12/2023]
Abstract
The structure of the human skin is directly dependent on its location and the mechanical forces to which it is subjected. In the present work, we have performed a comprehensive analysis of the human ridged and non-ridged skin to identify the differences and similarities between both skin types. For this purpose, human skin samples were obtained from dorsal hand skin (DHS), palmar hand skin (PHS), dorsal foot skin (DFS) and plantar foot skin (PFS) from the same cadaveric donors. Histological, histochemical and semiquantitative and quantitative immunohistochemical analyses were carried out to evaluate the epidermis, dermis and basement membrane. Results show that the epithelial layer of ridged skin had larger cell number and size than non-ridged skin for most strata. Melanocytes and Langerhans cells were more abundant in non-ridged skin, whereas Merkel cells were preferentially found in ridged skin. The expression pattern of CK5/6 was slightly differed between non-ridged and ridged skin. Involucrin expression was slightly more intense in non-ridged skin than in ridged skin. Collagen was more abundant in foot skin dermis than in hand skin, and in ridged skin as compared to non-ridged skin. Elastic fibers were more abundant in DHS. Biglycan was more abundant in foot skin than in hand skin. No differences were found for blood and lymphatic vessels. The basement membrane laminin was preferentially found in foot skin. These results revealed important differences at the epithelial, dermal and basement membrane levels that could contribute to a better knowledge of the human skin histology.
Collapse
Affiliation(s)
- A Vela-Romera
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,PhD Program in Biomedicine, Escuela de Posgrado, University of Granada, Granada, Spain
| | - V Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - M A Martín-Piedra
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - F Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - J Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain
| | - N Prados-Olleta
- Orthopedic Surgery Department, Virgen de las Nieves University Hospital, Granada, Spain.,Department of Surgery, University of Granada, Granada, Spain
| | - A Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - M Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain. .,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - I Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Torre A, Planta 5, 18016, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
12
|
Durand-Herrera D, Campos F, Jaimes-Parra BD, Sánchez-López JD, Fernández-Valadés R, Alaminos M, Campos A, Carriel V. Wharton's jelly-derived mesenchymal cells as a new source for the generation of microtissues for tissue engineering applications. Histochem Cell Biol 2018; 150:379-393. [PMID: 29931444 DOI: 10.1007/s00418-018-1685-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2018] [Indexed: 12/25/2022]
Abstract
Microtissues (MT) are currently considered as a promising alternative for the fabrication of natural, 3D biomimetic functional units for the construction of bio-artificial substitutes by tissue engineering (TE). The aim of this study was to evaluate the possibility of generating mesenchymal cell-based MT using human umbilical cord Wharton's jelly stromal cells (WJSC-MT). MT were generated using agarose microchips and evaluated ex vivo during 28 days. Fibroblasts MT (FIB-MT) were used as control. Morphometry, cell viability and metabolism, MT-formation process and ECM synthesis were assessed by phase-contrast microscopy, functional biochemical assays, and histological analyses. Morphometry revealed a time-course compaction process in both MT, but WJSC-MT resulted to be larger than FIB-MT in all days analyzed. Cell viability and functionality evaluation demonstrated that both MT were composed by viable and metabolically active cells, especially the WJSC during 4-21 days ex vivo. Histology showed that WJSC acquired a peripheral pattern and synthesized an extracellular matrix-rich core over the time, what differed from the homogeneous pattern observed in FIB-MT. This study demonstrates the possibility of using WJSC to create MT containing viable and functional cells and abundant extracellular matrix. We hypothesize that WJSC-MT could be a promising alternative in TE protocols. However, future cell differentiation and in vivo studies are still needed to demonstrate the potential usefulness of WJSC-MT in regenerative medicine.
Collapse
Affiliation(s)
- D Durand-Herrera
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
- Doctoral Programme in Biomedicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - F Campos
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - B D Jaimes-Parra
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
| | - J D Sánchez-López
- Division of Maxillofacial Surgery, University Hospital Complex of Granada, Granada, Spain
| | - R Fernández-Valadés
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Division of Pediatric Surgery, University Hospital Complex of Granada, Granada, Spain
| | - M Alaminos
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - A Campos
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - V Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|