1
|
Balanoff AM. Dinosaur palaeoneurology: an evolving science. Biol Lett 2024; 20:20240472. [PMID: 39689851 DOI: 10.1098/rsbl.2024.0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 12/19/2024] Open
Abstract
Our fascination with dinosaur brains and their capabilities essentially began with the first dinosaur discovery. The history of this study is a useful reflection of palaeoneurology as a whole and its relationship to a more inclusive evolutionary neuroscience. I argue that this relationship is imbued with high heuristic potential, but one whose realization requires overcoming certain constraints. These constraints include the need for a stable phylogenetic framework, methods for efficient and precise endocast construction, and fossil researchers who are steeped in a neuroscience perspective. The progress that has already been made in these areas sets the stage for a more mature palaeoneurology-not only one capable of being informed by neuroscience discoveries but one that drives such discoveries. I draw from work on the size, shape, behavioural correlates and developmental role of the dinosaur brain to outline current advances in dinosaur palaeoneurology. My examples largely are taken from theropods and centre on questions related to the origin of birds and their unique locomotory capabilities. The hope, however, is that these exemplify the potential for study in other dinosaur groups, and for utilizing the dinosaur-bird lineage as a parallel model on a par with mammals for studying encephalization.
Collapse
Affiliation(s)
- Amy M Balanoff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Yu C, Watanabe A, Qin Z, Logan King J, Witmer LM, Ma Q, Xu X. Avialan-like brain morphology in Sinovenator (Troodontidae, Theropoda). Commun Biol 2024; 7:168. [PMID: 38341492 PMCID: PMC10858883 DOI: 10.1038/s42003-024-05832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Many modifications to the skull and brain anatomy occurred along the lineage encompassing non-avialan theropod dinosaurs and modern birds. Anatomical changes to the endocranium include an enlarged endocranial cavity, relatively larger optic lobes that imply elevated visual acuity, and proportionately smaller olfactory bulbs that suggest reduced olfactory capacity. Here, we use micro-computed tomographic (μCT) imaging to reconstruct the endocranium and its neuroanatomical features from an exceptionally well-preserved skull of Sinovenator changii (Troodontidae, Theropoda). While its overall morphology resembles the typical endocranium of other troodontids, Sinovenator also exhibits unique endocranial features that are similar to other paravian taxa and non-maniraptoran theropods. Landmark-based geometric morphometric analysis on endocranial shape of non-avialan and avialan dinosaurs points to the overall brain morphology of Sinovenator most closely resembling that of Archaeopteryx, thus indicating acquisition of avialan-grade brain morphology in troodontids and wide existence of such architecture in Maniraptora.
Collapse
Affiliation(s)
- Congyu Yu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation & Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, 610059, China
- Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu, 610059, China
- Division of Paleontology, American Museum of Natural History, New York, NY, 10024, USA
| | - Akinobu Watanabe
- Division of Paleontology, American Museum of Natural History, New York, NY, 10024, USA
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Zichuan Qin
- Palaeontology Research Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
| | - J Logan King
- Palaeontology Research Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecological and Evolutionary Studies, Ohio University, Athens, OH, 45701, USA
| | - Qingyu Ma
- Chongqing Laboratory of Geological Heritage Protection and Research, No. 208 Hydrogeological and Engineering Geological Team, Chongqing Bureau of Geology and Minerals Exploration, Chongqing, 401121, China
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China.
- Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming, 650091, China.
- Paleontological Museum of Liaoning, Shenyang Normal University, Liaoning Province, 253 North Huanghe Street, Shenyang, 110034, China.
| |
Collapse
|
3
|
Barker CT, Naish D, Trend J, Michels LV, Witmer L, Ridgley R, Rankin K, Clarkin CE, Schneider P, Gostling NJ. Modified skulls but conservative brains? The palaeoneurology and endocranial anatomy of baryonychine dinosaurs (Theropoda: Spinosauridae). J Anat 2023; 242:1124-1145. [PMID: 36781174 PMCID: PMC10184548 DOI: 10.1111/joa.13837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
The digital reconstruction of neurocranial endocasts has elucidated the gross brain structure and potential ecological attributes of many fossil taxa, including Irritator, a spinosaurine spinosaurid from the "mid" Cretaceous (Aptian) of Brazil. With unexceptional hearing capabilities, this taxon was inferred to integrate rapid and controlled pitch-down movements of the head that perhaps aided in the predation of small and agile prey such as fish. However, the neuroanatomy of baryonychine spinosaurids remains to be described, and potentially informs on the condition of early spinosaurids. Using micro-computed tomographic scanning (μCT), we reconstruct the braincase endocasts of Baryonyx walkeri and Ceratosuchops inferodios from the Wealden Supergroup (Lower Cretaceous) of England. We show that the gross endocranial morphology is similar to other non-maniraptoriform theropods, and corroborates previous observations of overall endocranial conservatism amongst more basal theropods. Several differences of unknown taxonomic utility are noted between the pair. Baryonychine neurosensory capabilities include low-frequency hearing and unexceptional olfaction, whilst the differing morphology of the floccular lobe tentatively suggests less developed gaze stabilisation mechanisms relative to spinosaurines. Given the morphological similarities observed with other basal tetanurans, baryonychines likely possessed comparable behavioural sophistication, suggesting that the transition from terrestrial hypercarnivorous ancestors to semi-aquatic "generalists" during the evolution of Spinosauridae did not require substantial modification of the brain and sensory systems.
Collapse
Affiliation(s)
- Chris Tijani Barker
- Institute for Life Sciences, University of Southampton, University Road, Southampton, UK.,Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, UK
| | - Darren Naish
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Jacob Trend
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Lysanne Veerle Michels
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Lawrence Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| | - Ryan Ridgley
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, USA
| | - Katy Rankin
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Claire E Clarkin
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Philipp Schneider
- Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.,High-Performance Vision Systems, Center for Vision, Automation and Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Neil J Gostling
- Institute for Life Sciences, University of Southampton, University Road, Southampton, UK.,School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| |
Collapse
|
4
|
Navalón G, Chiappe LM, Martinelli AG, Nava W, Field DJ. Fossil basicranium clarifies the origin of the avian central nervous system and inner ear. Proc Biol Sci 2022; 289:20221398. [PMID: 36168759 PMCID: PMC9515635 DOI: 10.1098/rspb.2022.1398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Among terrestrial vertebrates, only crown birds (Neornithes) rival mammals in terms of relative brain size and behavioural complexity. Relatedly, the anatomy of the avian central nervous system and associated sensory structures, such as the vestibular system of the inner ear, are highly modified with respect to those of other extant reptile lineages. However, a dearth of three-dimensional Mesozoic fossils has limited our knowledge of the origins of the distinctive endocranial structures of crown birds. Traits such as an expanded, flexed brain, a ventral connection between the brain and spinal column, and a modified vestibular system have been regarded as exclusive to Neornithes. Here, we demonstrate all of these ‘advanced’ traits in an undistorted braincase from an Upper Cretaceous enantiornithine bonebed in southeastern Brazil. Our discovery suggests that these crown bird-like endocranial traits may have originated prior to the split between Enantiornithes and the more crownward portion of avian phylogeny over 140 Ma, while coexisting with a remarkably plesiomorphic cranial base and posterior palate region. Altogether, our results support the interpretation that the distinctive endocranial morphologies of crown birds and their Mesozoic relatives are affected by complex trade-offs between spatial constraints during development.
Collapse
Affiliation(s)
- Guillermo Navalón
- Unidad de Paleontología, Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Luis M Chiappe
- Dinosaur Institute, Natural History Museum of Los Angeles, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
| | - Agustín G Martinelli
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia', Buenos Aires, Argentina
| | - William Nava
- Museu de Paleontologia de Marília, Marília, São Paulo, Brazil
| | - Daniel J Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.,Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Nakao T, Yamasaki T, Ogihara N, Shimada M. Relationship between flightlessness and brain morphology among Rallidae. J Anat 2022; 241:776-788. [PMID: 35608388 PMCID: PMC9358762 DOI: 10.1111/joa.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Studies have suggested that the brain morphology and flight ability of Aves are interrelated; however, such a relationship has not been thoroughly investigated. This study aimed to examine whether flight ability, volant or flightless, affects brain morphology (size and shape) in the Rallidae, which has independently evolved to adapt secondary flightlessness multiple times within a single taxonomic group. Brain endocasts were extracted from computed tomography images of the crania, measured by 3D geometric morphometrics, and were analyzed using principal component analysis. The results of phylogenetic ANCOVA showed that flightless rails have brain sizes and shapes that are significantly larger than and different from those of volant rails, even after considering the effects of body mass and brain size respectively. Flightless rails tended to have a wider telencephalon and more inferiorly positioned foramen magnum than volant rails. Although the brain is an organ that requires a large amount of metabolic energy, reduced selective pressure for a lower body weight may have allowed flightless rails to have larger brains. The evolution of flightlessness may have changed the position of the foramen magnum downward, which would have allowed the support of the heavier cranium. The larger brain may have facilitated the acquisition of cognitively advanced behavior, such as tool-using behavior, among rails.
Collapse
Affiliation(s)
- Tatsuro Nakao
- Graduate School of Science and EngineeringTeikyo University of ScienceUenoharaJapan
| | | | | | - Masaki Shimada
- Department of Animal SciencesTeikyo University of ScienceUenoharaJapan
| |
Collapse
|
6
|
New Remains of Scandiavis mikkelseni Inform Avian Phylogenetic Relationships and Brain Evolution. DIVERSITY 2021. [DOI: 10.3390/d13120651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although an increasing number of studies are combining skeletal and neural morphology data in a phylogenetic context, most studies do not include extinct taxa due to the rarity of preserved endocasts. The early Eocene avifauna of the Fur Formation of Denmark presents an excellent opportunity for further study of extinct osteological and endocranial morphology as fossils are often exceptionally preserved in three dimensions. Here, we use X-ray computed tomography to present additional material of the previously described taxon Scandiavis mikkelseni and reassess its phylogenetic placement using a previously published dataset. The new specimen provides novel insights into the osteological morphology and brain anatomy of Scandiavis. The virtual endocast exhibits a morphology comparable to that of modern avian species. Endocranial evaluation shows that it was remarkably similar to that of certain extant Charadriiformes, yet also possessed a novel combination of traits. This may mean that traits previously proposed to be the result of shifts in ecology later in the evolutionary history of Charadriiformes may instead show a more complex distribution in stem Charadriiformes and/or Gruiformes depending on the interrelationships of these important clades. Evaluation of skeletal and endocranial character state changes within a previously published phylogeny confirms both S. mikkelseni and a putative extinct charadriiform, Nahmavis grandei, as charadriiform. Results bolster the likelihood that both taxa are critical fossils for divergence dating and highlight a biogeographic pattern similar to that of Gruiformes.
Collapse
|
7
|
Knoll F, Lautenschlager S, Kawabe S, Martínez G, Espílez E, Mampel L, Alcalá L. Palaeoneurology of the early cretaceous iguanodont Proa valdearinnoensis and its bearing on the parallel developments of cognitive abilities in theropod and ornithopod dinosaurs. J Comp Neurol 2021; 529:3922-3945. [PMID: 34333763 DOI: 10.1002/cne.25224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/10/2022]
Abstract
Proa valdearinnoensis is a relatively large-headed and stocky iguanodontian dinosaur from the latest Early Cretaceous of Spain. Its braincase is known from three specimens. Similar to that of other dinosaurs, it shows a mosaic ossification pattern in which most of the bones seem to have fused together indistinguishably while a few (frontoparietal, basioccipital) might have remained loosely attached. The endocasts of the three specimens are described based on CT data and digital reconstructions. They show unmistakable morphological similarities with the endocast of closely related taxa, such as Sirindhorna khoratensis (which is close in age but from Thailand). This supports a high conservatism of the endocranial cavity. The issue of volumetric correspondence between endocranial cavity and brain in dinosaurs is analyzed. Although a brain-to-endocranial cavity (BEC) index of 0.50 has been traditionally used, we employ instead 0.73. This is indeed the mid-value between the situation in adults of Alligator mississippiensis and Gallus gallus, which are members of the extant bracketing taxa of dinosaurs (Crocodilia and Aves). We thence gauge the level of encephalization of P. valdearinnoensis through the calculation of the encephalization quotient (EQ), which remains valuable as a metric for assessing the degree of cognitive function in extinct taxa, especially those with fully ossified braincases like dinosaurs and other archosaurs. The EQ obtained for P. valdearinnoensis (3.611) suggests that this species was significantly more encephalized than most if not all extant nonavian, nonmammalian amniotes. Our work adds to the growing body of data concerning theoretical cognitive capabilities in dinosaurs and supports the idea that an increasing encephalization was fostered not only in theropods but also in parallel in the shorter-lived lineage of ornithopods. P. valdearinnoensis was ill-equipped to respond to theropod dinosaurs and possibly lived in groups as a strategy to mitigate the risk of being predated upon. We hypothesize that group-living and protracted caring of juveniles in this and possibly many other iguanodontian ornithopods favored a degree of encephalization that was outstanding by reptile standards.
Collapse
Affiliation(s)
- Fabien Knoll
- Fundación ARAID, Zaragoza, Spain.,Fundación Conjunto Paleontológico de Teruel-Dinópolis, Teruel, Spain.,Departamento de Paleobiología, Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Soichiro Kawabe
- Institute of Dinosaur Research, Fukui Prefectural University, Fukui, Japan.,Fukui Prefectural Dinosaur Museum, Fukui, Japan
| | - Gloria Martínez
- Servicio de Radiodiagnóstico, Hospital General Obispo Polanco, Teruel, Spain
| | - Eduardo Espílez
- Fundación Conjunto Paleontológico de Teruel-Dinópolis, Teruel, Spain
| | - Luis Mampel
- Fundación Conjunto Paleontológico de Teruel-Dinópolis, Teruel, Spain
| | - Luis Alcalá
- Fundación Conjunto Paleontológico de Teruel-Dinópolis, Teruel, Spain
| |
Collapse
|
8
|
Watanabe A, Balanoff AM, Gignac PM, Gold MEL, Norell MA. Novel neuroanatomical integration and scaling define avian brain shape evolution and development. eLife 2021; 10:68809. [PMID: 34227464 PMCID: PMC8260227 DOI: 10.7554/elife.68809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
How do large and unique brains evolve? Historically, comparative neuroanatomical studies have attributed the evolutionary genesis of highly encephalized brains to deviations along, as well as from, conserved scaling relationships among brain regions. However, the relative contributions of these concerted (integrated) and mosaic (modular) processes as drivers of brain evolution remain unclear, especially in non-mammalian groups. While proportional brain sizes have been the predominant metric used to characterize brain morphology to date, we perform a high-density geometric morphometric analysis on the encephalized brains of crown birds (Neornithes or Aves) compared to their stem taxa—the non-avialan coelurosaurian dinosaurs and Archaeopteryx. When analyzed together with developmental neuroanatomical data of model archosaurs (Gallus, Alligator), crown birds exhibit a distinct allometric relationship that dictates their brain evolution and development. Furthermore, analyses by neuroanatomical regions reveal that the acquisition of this derived shape-to-size scaling relationship occurred in a mosaic pattern, where the avian-grade optic lobe and cerebellum evolved first among non-avialan dinosaurs, followed by major changes to the evolutionary and developmental dynamics of cerebrum shape after the origin of Avialae. Notably, the brain of crown birds is a more integrated structure than non-avialan archosaurs, implying that diversification of brain morphologies within Neornithes proceeded in a more coordinated manner, perhaps due to spatial constraints and abbreviated growth period. Collectively, these patterns demonstrate a plurality in evolutionary processes that generate encephalized brains in archosaurs and across vertebrates.
Collapse
Affiliation(s)
- Akinobu Watanabe
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, United States.,Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Life Sciences Vertebrates Division, Natural History Museum, London, United Kingdom
| | - Amy M Balanoff
- Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, United States
| | - Paul M Gignac
- Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, United States
| | - M Eugenia L Gold
- Division of Paleontology, American Museum of Natural History, New York, United States.,Biology Department, Suffolk University, Boston, United States
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, United States
| |
Collapse
|
9
|
Werneburg I, Evers SW, Ferreira G. On the “cartilaginous rider” in the endocasts of turtle brain cavities. VERTEBRATE ZOOLOGY 2021. [DOI: 10.3897/vz.71.e66756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
In recent years, paleoneurology became a very popular research field and hundreds of brain-endocasts were described. The interpretation of a dorsal protuberance of the brain-endocast puzzled researchers for a long time, the so-called (cartilaginous) rider. This is mainly because of technical limitations in the past and due to non-accessibility of comparative material. Using turtles as a case-study, we conducted a literature review and studied embryological data in addition to fossil and extant species’ endocasts. We assessed three hypotheses on the origin of the rider as relating to 1) the pineal gland, to 2) the blood vessel system, and to 3) skull roof elements. Based on our integrated anatomical observations, we refute the pineal gland hypothesis (1) and an exclusive blood vessel explanation (2). However, we show that, in most cases, the cartilaginous origin applies (3). The related cartilages, mainly the anterior process of the chondrocranial tectum synoticum, can persist until adulthood. Its diversity is interpreted in regard to the mechanical support for the temporal skull region, the shape of which has been shown to be in turn related to neck retraction and jaw mechanics. Finally, we highlight the value of embryological data to provide profound hypotheses for evolutionary research despite its low quantitative evaluability. We argue that it should be studied in conjunction with modern computer-aided data acquisition whenever possible.
Collapse
|
10
|
Mayr G, Goedert JL, De Pietri VL, Scofield RP. Comparative osteology of the penguin‐like mid‐Cenozoic Plotopteridae and the earliest true fossil penguins, with comments on the origins of wing‐propelled diving. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gerald Mayr
- Ornithological Section Senckenberg Research Institute and Natural History Museum Frankfurt Frankfurt am Main Germany
| | - James L. Goedert
- Burke Museum of Natural History and Culture University of Washington Seattle WA USA
| | | | | |
Collapse
|