1
|
Insausti R, Insausti AM, Muñoz López M, Medina Lorenzo I, Arroyo-Jiménez MDM, Marcos Rabal MP, de la Rosa-Prieto C, Delgado-González JC, Montón Etxeberria J, Cebada-Sánchez S, Raspeño-García JF, Iñiguez de Onzoño MM, Molina Romero FJ, Benavides-Piccione R, Tapia-González S, Wisse LEM, Ravikumar S, Wolk DA, DeFelipe J, Yushkevich P, Artacho-Pérula E. Ex vivo, in situ perfusion protocol for human brain fixation compatible with microscopy, MRI techniques, and anatomical studies. Front Neuroanat 2023; 17:1149674. [PMID: 37034833 PMCID: PMC10076536 DOI: 10.3389/fnana.2023.1149674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
We present a method for human brain fixation based on simultaneous perfusion of 4% paraformaldehyde through carotids after a flush with saline. The left carotid cannula is used to perfuse the body with 10% formalin, to allow further use of the body for anatomical research or teaching. The aim of our method is to develop a vascular fixation protocol for the human brain, by adapting protocols that are commonly used in experimental animal studies. We show that a variety of histological procedures can be carried out (cyto- and myeloarchitectonics, histochemistry, immunohistochemistry, intracellular cell injection, and electron microscopy). In addition, ex vivo, ex situ high-resolution MRI (9.4T) can be obtained in the same specimens. This procedure resulted in similar morphological features to those obtained by intravascular perfusion in experimental animals, provided that the postmortem interval was under 10 h for several of the techniques used and under 4 h in the case of intracellular injections and electron microscopy. The use of intravascular fixation of the brain inside the skull provides a fixed whole human brain, perfectly fitted to the skull, with negligible deformation compared to conventional techniques. Given this characteristic of ex vivo, in situ fixation, this procedure can probably be considered the most suitable one available for ex vivo MRI scans of the brain. We describe the compatibility of the method proposed for intravascular fixation of the human brain and fixation of the donor's body for anatomical purposes. Thus, body donor programs can provide human brain tissue, while the remainder of the body can also be fixed for anatomical studies. Therefore, this method of human brain fixation through the carotid system optimizes the procurement of human brain tissue, allowing a greater understanding of human neurological diseases, while benefiting anatomy departments by making the remainder of the body available for teaching purposes.
Collapse
Affiliation(s)
- Ricardo Insausti
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Ana María Insausti
- Department of Health, School of Medicine, Public University of Navarra, Pamplona, Spain
| | - Mónica Muñoz López
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Isidro Medina Lorenzo
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Maria del Mar Arroyo-Jiménez
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - María Pilar Marcos Rabal
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Carlos de la Rosa-Prieto
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - José Carlos Delgado-González
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Javier Montón Etxeberria
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Sandra Cebada-Sánchez
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Juan Francisco Raspeño-García
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - María Mercedes Iñiguez de Onzoño
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Francisco Javier Molina Romero
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Instituto Cajal, CSIC, Madrid, Spain
| | - Silvia Tapia-González
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Instituto Cajal, CSIC, Madrid, Spain
| | | | - Sadhana Ravikumar
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Instituto Cajal, CSIC, Madrid, Spain
| | - Paul Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emilio Artacho-Pérula
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| |
Collapse
|
2
|
Davies DM, van den Handel K, Bharadwaj S, Lengefeld J. Cellular enlargement - A new hallmark of aging? Front Cell Dev Biol 2022; 10:1036602. [PMID: 36438561 PMCID: PMC9688412 DOI: 10.3389/fcell.2022.1036602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2023] Open
Abstract
Years of important research has revealed that cells heavily invest in regulating their size. Nevertheless, it has remained unclear why accurate size control is so important. Our recent study using hematopoietic stem cells (HSCs) in vivo indicates that cellular enlargement is causally associated with aging. Here, we present an overview of these findings and their implications. Furthermore, we performed a broad literature analysis to evaluate the potential of cellular enlargement as a new aging hallmark and to examine its connection to previously described aging hallmarks. Finally, we highlight interesting work presenting a correlation between cell size and age-related diseases. Taken together, we found mounting evidence linking cellular enlargement to aging and age-related diseases. Therefore, we encourage researchers from seemingly unrelated areas to take a fresh look at their data from the perspective of cell size.
Collapse
Affiliation(s)
- Daniel M. Davies
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kim van den Handel
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Soham Bharadwaj
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jette Lengefeld
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Jové M, Mota-Martorell N, Torres P, Ayala V, Portero-Otin M, Ferrer I, Pamplona R. The Causal Role of Lipoxidative Damage in Mitochondrial Bioenergetic Dysfunction Linked to Alzheimer's Disease Pathology. Life (Basel) 2021; 11:life11050388. [PMID: 33923074 PMCID: PMC8147054 DOI: 10.3390/life11050388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/18/2023] Open
Abstract
Current shreds of evidence point to the entorhinal cortex (EC) as the origin of the Alzheimer’s disease (AD) pathology in the cerebrum. Compared with other cortical areas, the neurons from this brain region possess an inherent selective vulnerability derived from particular oxidative stress conditions that favor increased mitochondrial molecular damage with early bioenergetic involvement. This alteration of energy metabolism is the starting point for subsequent changes in a multitude of cell mechanisms, leading to neuronal dysfunction and, ultimately, cell death. These events are induced by changes that come with age, creating the substrate for the alteration of several neuronal pathways that will evolve toward neurodegeneration and, consequently, the development of AD pathology. In this context, the present review will focus on description of the biological mechanisms that confer vulnerability specifically to neurons of the entorhinal cortex, the changes induced by the aging process in this brain region, and the alterations at the mitochondrial level as the earliest mechanism for the development of AD pathology. Current findings allow us to propose the existence of an altered allostatic mechanism at the entorhinal cortex whose core is made up of mitochondrial oxidative stress, lipid metabolism, and energy production, and which, in a positive loop, evolves to neurodegeneration, laying the basis for the onset and progression of AD pathology.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Pascual Torres
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Victoria Ayala
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, 28220 Madrid, Spain
- Correspondence: (I.F.); (R.P.)
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
- Correspondence: (I.F.); (R.P.)
| |
Collapse
|
4
|
Delgado-González JC, de la Rosa Prieto C, Vallejo-Calcerrada N, Tarruela-Hernández DL, Cebada-Sánchez S, Insausti R, Artacho-Pérula E. Quantitative assessment of amygdala in Macaca fascicularis monkeys. J Comp Neurol 2020; 529:2091-2098. [PMID: 33247432 DOI: 10.1002/cne.25074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/03/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022]
Abstract
The amygdaloid complex (AC) is involved in very relevant cognitive and emotional pathways and exhibits changes in aging and in some neurological and psychiatric disorders. The quantitative estimators of AC could be useful to understand the impact of amygdaloid pathology in these processes, both globally and for each nucleus in particular, and their neurons. The present study analyzes morphometric and stereological estimators in the whole AC and its three main nuclei (lateral [La], basal [Ba], and accessory basal [AB]) in six Macaca fascicularis monkeys. All the brains were fixed and sectioned in the coronal plane; Nissl-stained sections were used for estimation of size and form parameters in both, the AC, and the La, Ba, and AB nuclei separately. The study includes stereological estimates of the volume and surface area of the AC; also, volume of the neurons in the amygdaloid nuclei was estimated using the point-sampled intercepts method. Our results show that the AB nucleus is smaller than both the La and Ba nuclei in both morphometric and stereological estimators. Brain hemispheric side had not significant influence on any of quantitative estimates. The neuron volume was higher in the AB nucleus relative to LA and Ba of the nuclei. These data describe some quantitative parameters of the amygdaloid complex and their main nuclei that could help us to detect small changes in neurodegenerative and other pathological processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Ricardo Insausti
- School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | | |
Collapse
|