1
|
Piazza SJ. Beyond Inverse Dynamics: Methods for Assessment of Individual Muscle Function during Gait. Bioengineering (Basel) 2024; 11:896. [PMID: 39329638 PMCID: PMC11429282 DOI: 10.3390/bioengineering11090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Three-dimensional motion analysis performed in the modern gait analysis laboratory provides a wealth of information about the kinematics and kinetics of human locomotion, but standard gait analysis is largely restricted to joint-level measures. Three-dimensional joint rotations, joint moments, and joint powers tell us a great deal about gait mechanics, but it is often of interest to know about the roles that muscles play. This narrative review surveys work that has been done, largely over the past four decades, to augment standard gait analysis with muscle-level assessments of function. Often, these assessments have incorporated additional technology such as ultrasound imaging, or complex modeling and simulation techniques. The review discusses measurements of muscle moment arm during walking along with assessment of muscle mechanical advantage, muscle-tendon lengths, and the use of induced acceleration analysis to determine muscle roles. In each section of the review, examples are provided of how the auxiliary analyses have been used to gain potentially useful information about normal and pathological human walking. While this work highlights the potential benefits of adding various measures to gait analysis, it is acknowledged that challenges to implementation remain, such as the need for specialized knowledge and the potential for bias introduced by model choices.
Collapse
Affiliation(s)
- Stephen J Piazza
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Veerkamp K, van der Krogt MM, Waterval NFJ, Geijtenbeek T, Walsh HPJ, Harlaar J, Buizer AI, Lloyd DG, Carty CP. Predictive simulations identify potential neuromuscular contributors to idiopathic toe walking. Clin Biomech (Bristol, Avon) 2024; 111:106152. [PMID: 38091916 DOI: 10.1016/j.clinbiomech.2023.106152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Most cases of toe walking in children are idiopathic. We used pathology-specific neuromusculoskeletal predictive simulations to identify potential underlying neural and muscular mechanisms contributing to idiopathic toe walking. METHODS A musculotendon contracture was added to the ankle plantarflexors of a generic musculoskeletal model to represent a pathology-specific contracture model, matching the reduced ankle dorsiflexion range-of-motion in a cohort of children with idiopathic toe walking. This model was employed in a forward dynamic simulation controlled by reflexes and supraspinal drive, governed by a multi-objective cost function to predict gait patterns with the contracture model. We validated the predicted gait using experimental gait data from children with idiopathic toe walking with ankle contracture, by calculating the root mean square errors averaged over all biomechanical variables. FINDINGS A predictive simulation with the pathology-specific model with contracture approached experimental ITW data (root mean square error = 1.37SD). Gastrocnemius activation was doubled from typical gait simulations, but lacked a peak in early stance as present in electromyography. This synthesised idiopathic toe walking was more costly for all cost function criteria than typical gait simulation. Also, it employed a different neural control strategy, with increased length- and velocity-based reflex gains to the plantarflexors in early stance and swing than typical gait simulations. INTERPRETATION The simulations provide insights into how a musculotendon contracture combined with altered neural control could contribute to idiopathic toe walking. Insights into these neuromuscular mechanisms could guide future computational and experimental studies to gain improved insight into the cause of idiopathic toe walking.
Collapse
Affiliation(s)
- Kirsten Veerkamp
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands; School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia; Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, and Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University Gold Coast, Australia.
| | - Marjolein M van der Krogt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
| | - Niels F J Waterval
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands; Amsterdam UMC, Univ of Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Thomas Geijtenbeek
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - H P John Walsh
- Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, and Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University Gold Coast, Australia; Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Queensland Children's Hospital, Brisbane, Australia
| | - Jaap Harlaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Orthopedics & Sports Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annemieke I Buizer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands; Emma Children's Hospital Amsterdam UMC, Amsterdam, the Netherlands
| | - David G Lloyd
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia; Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, and Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University Gold Coast, Australia
| | - Christopher P Carty
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia; Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, and Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University Gold Coast, Australia; Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Queensland Children's Hospital, Brisbane, Australia
| |
Collapse
|
3
|
Kononova S, Kashparov M, Xue W, Bobkova N, Leonov S, Zagorodny N. Gut Microbiome Dysbiosis as a Potential Risk Factor for Idiopathic Toe-Walking in Children: A Review. Int J Mol Sci 2023; 24:13204. [PMID: 37686011 PMCID: PMC10488280 DOI: 10.3390/ijms241713204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Idiopathic toe walking (ITW) occurs in about 5% of children. Orthopedic treatment of ITW is complicated by the lack of a known etiology. Only half of the conservative and surgical methods of treatment give a stable positive result of normalizing gait. Available data indicate that the disease is heterogeneous and multifactorial. Recently, some children with ITW have been found to have genetic variants of mutations that can lead to the development of toe walking. At the same time, some children show sensorimotor impairment, but these studies are very limited. Sensorimotor dysfunction could potentially arise from an imbalanced production of neurotransmitters that play a crucial role in motor control. Using the data obtained in the studies of several pathologies manifested by the association of sensory-motor dysfunction and intestinal dysbiosis, we attempt to substantiate the notion that malfunction of neurotransmitter production is caused by the imbalance of gut microbiota metabolites as a result of dysbiosis. This review delves into the exciting possibility of a connection between variations in the microbiome and ITW. The purpose of this review is to establish a strong theoretical foundation and highlight the benefits of further exploring the possible connection between alterations in the microbiome and TW for further studies of ITW etiology.
Collapse
Affiliation(s)
- Svetlana Kononova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Mikhail Kashparov
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (M.K.); (N.Z.)
- Scientific and Practical Center for Child Psychoneurology, 119602 Moscow, Russia
| | - Wenyu Xue
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (W.X.); (S.L.)
| | - Natalia Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (W.X.); (S.L.)
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Nikolaj Zagorodny
- Department of Traumatology and Orthopedics, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (M.K.); (N.Z.)
- N.N. Priorov Central Research Institute of Traumatology and Orthopedics, 127299 Moscow, Russia
| |
Collapse
|
4
|
Veerkamp K, van der Krogt MM, Waterval NFJ, Geijtenbeek T, Walsh HPJ, Harlaar J, Buizer AI, Lloyd DG, Carty CP. Comments on Harkness-Armstrong et al. (2021) 'In vivo operating lengths of the gastrocnemius muscle during gait in children who idiopathically toe-walk'. Exp Physiol 2022; 107:1521-1524. [PMID: 36288900 DOI: 10.1113/ep090713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Kirsten Veerkamp
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia.,Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, Queensland, Australia
| | - Marjolein M van der Krogt
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Niels F J Waterval
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Rehabilitation Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas Geijtenbeek
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Henry P J Walsh
- Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, Queensland, Australia.,Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Jaap Harlaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Orthopedics and Sports Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annemieke I Buizer
- Department of Rehabilitation Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Rehabilitation & Development, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - David G Lloyd
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia.,Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, Queensland, Australia
| | - Christopher P Carty
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia.,Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, Queensland, Australia.,Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Queensland Children's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|