1
|
Kamila ZP, Renata D, Kołodziejczak A, Rotsztejn H. Ferulic acid - a novel topical agent in reducing signs of photoaging. Dermatol Ther 2022; 35:e15543. [PMID: 35486440 DOI: 10.1111/dth.15543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/24/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Continuous production of reactive oxygen species, induced by UV radiation, is one of the main mechanisms contributing to skin photoaging. Therefore, the use of novel superior antioxidants, which ferulic acid belongs to, is an innovative treatment option. The aim of this study was to evaluate the effect of 14% ferulic acid peel on skin hydration, topography, the level of melanin, and the severity of erythema, in people with skin photoaging symptoms. METHODS 20 women aged 45 to 60, received 8 treatments of chemical peeling in 1-week intervals. Efficacy was measured using The Multi Probe Adapter (MPA) Systems (Courage + Khazaka electronic GmbH, Köln, Germany). The measurements were taken before, 8, and 12 weeks after the first treatment. Additionally, the photo documentation was made with Fotomedicus (Elfo) and VISIA® Complexion Analysis System (Canfield Scientific, Inc.). Results The objective evaluation showed statistically significant improvement in all measured skin parameters (P<0,05). The best results of skin hydration and melanin level were observed right after the end of the series (P<0,001). The best improvement in erythema reduction was noted a month after the last treatment (P<0,0001). At the control, untreated point none of the probes showed statistically significant changes. CONCLUSION In conclusion, a series of treatments with 14% ferulic acid peel has a significant bleaching, erythema-reducing, and moisturizing activity. The results achieved by apparatus, are reflected by photo documentation. The effects achieved during a series persist over time.
Collapse
Affiliation(s)
- Zduńska-Pęciak Kamila
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1 Street, Łódź, Poland
| | - Dębowska Renata
- Centre for Science and Research Dr Irena Eris, Warsaw, Poland
| | - Anna Kołodziejczak
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Łódź, Łódź, Poland
| | - Helena Rotsztejn
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
2
|
Petrucci R, Bortolami M, Di Matteo P, Curulli A. Gold Nanomaterials-Based Electrochemical Sensors and Biosensors for Phenolic Antioxidants Detection: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:959. [PMID: 35335772 PMCID: PMC8950254 DOI: 10.3390/nano12060959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023]
Abstract
Antioxidants play a central role in the development and production of food, cosmetics, and pharmaceuticals, to reduce oxidative processes in the human body. Among them, phenolic antioxidants are considered even more efficient than other antioxidants. They are divided into natural and synthetic. The natural antioxidants are generally found in plants and their synthetic counterparts are generally added as preventing agents of lipid oxidation during the processing and storage of fats, oils, and lipid-containing foods: All of them can exhibit different effects on human health, which are not always beneficial. Because of their relevant bioactivity and importance in several sectors, such as agro-food, pharmaceutical, and cosmetic, it is crucial to have fast and reliable analysis Rmethods available. In this review, different examples of gold nanomaterial-based electrochemical (bio)sensors used for the rapid and selective detection of phenolic compounds are analyzed and discussed, evidencing the important role of gold nanomaterials, and including systems with or without specific recognition elements, such as biomolecules, enzymes, etc. Moreover, a selection of gold nanomaterials involved in the designing of this kind of (bio)sensor is reported and critically analyzed. Finally, advantages, limitations, and potentialities for practical applications of gold nanomaterial-based electrochemical (bio)sensors for detecting phenolic antioxidants are discussed.
Collapse
Affiliation(s)
- Rita Petrucci
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Martina Bortolami
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Paola Di Matteo
- Department of Basic and Applied Sciences of Engineering, Sapienza University of Rome, 00161 Rome, Italy; (R.P.); (M.B.); (P.D.M.)
| | - Antonella Curulli
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Unità Operativa di Support, Sapienza, 00161 Rome, Italy
| |
Collapse
|
3
|
Santos Pizzo J, Cruz VHM, Rodrigues CA, Pelissari Manin L, Visentainer L, Oliveira Santos O, Maldaner L, Visentainer JV. Rapid determination of L-ascorbic acid content in vitamin C serums by ultra-high-performance liquid chromatography-tandem mass spectrometry. Int J Cosmet Sci 2022; 44:131-141. [PMID: 34986505 DOI: 10.1111/ics.12762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aimed to develop and validate a rapid, simple, accurate, and precise analytical method for the quantification of L-AA in vitamin C serums. Moreover, the developed method was further applied to determine L-AA in eight different brands of vitamin C serums. A complementary study was also carried out to evaluate the stability of L-AA in the vitamin C serum samples after 15, 30, 45, and 60 days of storage at ambient temperature (15 ºC to 35 ºC). METHODS Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was applied. RESULTS Quantitative analyses were performed with a total chromatographic run time of 1.5 min by matrix-matched calibration, and the analytical curve was linear over the range of 1-1700 μg L-1 with a correlation coefficient of 0.9998. The limits of detection (LOD) and quantification (LOQ) were 0.3 and 1.0 μg L-1 , respectively. Intra- and inter-assay precisions, expressed in terms of relative standard deviation (RSD), ranged from 0.3% and 2.2%, respectively, and recoveries in two concentration levels (1 and 5 µg L-1 ) were 103.9% and 101.2%, respectively. The proposed analytical method was successfully applied to determine de L-AA content of eight commercial vitamin C serum samples. The stability of the target analyte in samples stored at ambient temperature (15 ºC to 35 ºC) was evaluated throughout 60 days with a 15-day interval between analyses. At 0 days, L-AA content in samples ranged from 1.05 - 169.91 mg L-1 , decreasing over time. CONCLUSION The proposed method could be powerful in routine analyses to ensure the quality of L-AA vitamin C serums since it proved a simple, reliable, fast, precise, accurate, and sensitive analytical method.
Collapse
Affiliation(s)
- Jessica Santos Pizzo
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil
| | | | | | - Luciana Pelissari Manin
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil
| | - Lorena Visentainer
- Clinica Lion Derm, Avenida Carneiro Leão, 563, 87014-010, Maringá - PR, Brazil
| | - Oscar Oliveira Santos
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil.,Programa de Pós-Graduação em Ciência de Alimentos, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil
| | - Liane Maldaner
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil
| | - Jesuí Vergilio Visentainer
- Departamento de Química, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil.,Programa de Pós-Graduação em Ciência de Alimentos, Universidade Estadual de Maringá (UEM), 87020-900, Maringá-PR, Brazil
| |
Collapse
|
4
|
Jacques C, Genies C, Bacqueville D, Tourette A, Borotra N, Chaves F, Sanches F, Gaudry AL, Bessou-Touya S, Duplan H. Ascorbic acid 2-glucoside: An ascorbic acid pro-drug with longer-term antioxidant efficacy in skin. Int J Cosmet Sci 2021; 43:691-702. [PMID: 34679221 DOI: 10.1111/ics.12745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Deleterious effects of pollutants and ultraviolet radiation on the skin can be attenuated using formulations containing antioxidants. However, these have disadvantages, including chemical instability, photodegradation, poor bioavailability or biological activity. Here, two commercial formulations were evaluated: one optimized to stabilize and deliver ascorbic acid (AA) at 15% and the other containing a glucoside form of AA, namely ascorbic acid 2-glucoside (AA2G), at 1.8% and at a physiological pH. We compared the skin delivery, antioxidative effects and chemical stability of AA2G with AA in their respective formulations. METHODS Skin delivery was measured using fresh viable human skin explants, and oxidative stress was measured using a human reconstructed epidermal (RHE) model according to levels of malondialdehyde (MDA), superoxide dismutase (SOD) and catalase. RESULTS Ascorbic acid 2-glucoside was completely metabolized to AA by the skin before entering the receptor compartment. The skin contained parent and AA, indicating a reserve of AA2G was present for further metabolism. For AA2G and AA, maximum flux of AA-equivalents was at 12 h, with continued absorption over 24 h. The absolute amount in µg was higher in the skin after application of AA than after application of AA2G. This may suggest a greater antioxidative effect; however, according to all three measurements of oxidative stress, the protective effect of AA and AA2G was similar. Unlike AA, AA2G was chemically stable under storage conditions. CONCLUSION A lower concentration of AA2G is as effective as the active metabolite, AA, in terms of antioxidant effects. AA2G was chemically stable and can be applied at a lower concentration than AA, thus avoiding the need for an acidic formulation with a pH below 3.5.
Collapse
Affiliation(s)
- Carine Jacques
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Camille Genies
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Daniel Bacqueville
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Amelie Tourette
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Nathalie Borotra
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Fernanda Chaves
- Brazilian Innovation Center, Pierre Fabre Dermo-cosmétique, Barra da Tijuca - Rio de Janeiro, Brasil
| | - Fabio Sanches
- Brazilian Innovation Center, Pierre Fabre Dermo-cosmétique, Barra da Tijuca - Rio de Janeiro, Brasil
| | - Anne L Gaudry
- Brazilian Innovation Center, Pierre Fabre Dermo-cosmétique, Barra da Tijuca - Rio de Janeiro, Brasil
| | - Sandrine Bessou-Touya
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Hélène Duplan
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| |
Collapse
|
5
|
Bounegru AV, Apetrei C. Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers-Gold Nanoparticles-Tyrosinase for the Detection of Ferulic Acid in Cosmetics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6724. [PMID: 33255463 PMCID: PMC7727797 DOI: 10.3390/s20236724] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/16/2023]
Abstract
The present paper deals with the electrochemical behavior of three types of sensors based on modified screen-printed electrodes (SPEs): a sensor based on carbon nanofibers (CNF/SPE), a sensor based on nanofibers of carbon modified with gold nanoparticles (CNF-GNP/SPE) and a biosensor based on nanofibers of carbon modified with gold nanoparticles and tyrosinase (CNF-GNP-Ty/SPE). To prepare the biosensor, the tyrosinase (Ty) was immobilized on the surface of the electrode already modified with carbon nanofibers and gold nanoparticles, by the drop-and-dry technique. The electrochemical properties of the three electrodes were studied by cyclic voltammetry in electroactive solutions, and the position and shape of the active redox peaks are according to the nature of the materials modifying the electrodes. In the case of ferulic acid, a series of characteristic peaks were observed, the processes being more intense for the biosensor, with the higher sensitivity and selectivity being due to the immobilization of tyrosinase, a specific enzyme for phenolic compounds. The calibration curve was subsequently created using CNF-GNP-Ty/SPE in ferulic acid solutions of various concentrations in the range 0.1-129.6 μM. This new biosensor allowed low values of the detection threshold and quantification limit, 2.89 × 10-9 mol·L-1 and 9.64 × 10-9 mol·L-1, respectively, which shows that the electroanalytical method is feasible for quantifying ferulic acid in real samples. The ferulic acid was quantitatively determined in three cosmetic products by means of the CNF-GNP-Ty/SPE biosensor. The results obtained were validated by means of the spectrometric method in the infrared range, the differences between the values of the ferulic acid concentrations obtained by the two methods being under 5%.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania;
| |
Collapse
|