1
|
Pianca N, Sacchi F, Umansky KB, Chirivì M, Iommarini L, Da Pra S, Papa V, Bongiovanni C, Miano C, Pontis F, Braga L, Tassinari R, Pantano E, Patnala RS, Mazzeschi M, Cenacchi G, Porcelli AM, Lauriola M, Ventura C, Giacca M, Rizzi R, Tzahor E, D'Uva G. Glucocorticoid receptor antagonization propels endogenous cardiomyocyte proliferation and cardiac regeneration. NATURE CARDIOVASCULAR RESEARCH 2022; 1:617-633. [PMID: 39196236 DOI: 10.1038/s44161-022-00090-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/24/2022] [Indexed: 09/01/2023]
Abstract
In mammals, the physiological activation of the glucocorticoid receptor (GR) by glucocorticoids (GCs) promotes the maturation of cardiomyocytes during late gestation, but the effect on postnatal cardiac growth and regenerative plasticity is unclear. Here we demonstrate that the GC-GR axis restrains cardiomyocyte proliferation during postnatal development. Cardiomyocyte-specific GR ablation in conditional knockout (cKO) mice delayed the postnatal cardiomyocyte cell cycle exit, hypertrophic growth and cytoarchitectural maturation. GR-cKO hearts showed increased expression of genes involved in glucose catabolism and reduced expression of genes promoting fatty acid oxidation and mitochondrial respiration. Accordingly, oxygen consumption in GR-cKO cardiomyocytes was less dependent on fatty acid oxidation, and glycolysis inhibition reverted GR-cKO effects on cardiomyocyte proliferation. GR ablation or transient pharmacological inhibition after myocardial infarction in juvenile and/or adult mice facilitated cardiomyocyte survival, cell cycle re-entry and division, leading to cardiac muscle regeneration along with reduced scar formation. Thus, GR restrains heart regeneration and may represent a therapeutic target.
Collapse
Affiliation(s)
- Nicola Pianca
- Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | - Francesca Sacchi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Kfir Baruch Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Maila Chirivì
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Monterotondo Scalo, Rome, Italy
- National Institute of Molecular Genetics (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Da Pra
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Valentina Papa
- Department of Biomedical and Neuromotors Sciences, Anatomic Pathology at S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Chiara Bongiovanni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Carmen Miano
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Pontis
- Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | - Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | | | - Elvira Pantano
- Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | | | - Martina Mazzeschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotors Sciences, Anatomic Pathology at S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Roberto Rizzi
- National Institute of Molecular Genetics (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gabriele D'Uva
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy.
| |
Collapse
|
2
|
Chen X, Hou X, Feng T, Han N, Wang J, Chang G. Anti-fertility effect of levonorgestrel and/or quinestrol on striped field mouse (Apodemus agrarius): evidence from both laboratory and field experiments. Integr Zool 2021; 17:1041-1052. [PMID: 34216194 DOI: 10.1111/1749-4877.12568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of combined levonorgestrel (P) and quinestrol (E) on the fertility of striped field mouse (Apodemus agrarius) has not been evaluated. We performed a series of experiments in both the laboratory and field to assess the effect of P and/or E on the fertility of A. agrarius. In the laboratory, to test the time-dependent anti-fertility effects of P and E, as well as their mixtures, 90 male striped field mice were randomly assigned to 6 treatment groups (n = 60), and a control group (n = 30). Mice in 3 treatment groups were administered 1 of the 3 compounds (1 mg⋅kg- 1 [body weight] EP-1, 0.34 mg⋅kg-1 E, 0.66 mg⋅kg-1 P) for 3 successive days (another half for 7 successive days) via oral gavage; mice were then sacrificed 15 and 45 days after initiating the gavage treatment. Our findings indicated that E and EP-1 treatment, but not P or control treatment, significantly decreased the sperm count in the caudal epididymis, as well as the weight of the testes, epididymides, and seminal vesicles. Additionally, fertile female mice mated with E- and EP-1-treated males produced smaller pups. These data indicate that E and EP-1 can induce infertility in male A. agrarius. In the field, the population density of A. agrarius was significantly influenced by EP-1, and the rodent density in the treatment group was lower than that in the control group. Overall, our results indicate that EP-1 is an effective contraceptive in A. agrarius, a dominant rodent species in the farmland.
Collapse
Affiliation(s)
- Xiaoning Chen
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, China.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiang Hou
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, China
| | - Tuo Feng
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, China
| | - Ning Han
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, China
| | - Jing Wang
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, China
| | - Gang Chang
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi'an, China
| |
Collapse
|
3
|
Shi L, Li X, Ji Z, Wang Z, Shi Y, Tian X, Wang Z. The reproductive inhibitory effects of levonorgestrel, quinestrol, and EP-1 in Brandt's vole ( Lasiopodomys brandtii). PeerJ 2020; 8:e9140. [PMID: 32566388 PMCID: PMC7293854 DOI: 10.7717/peerj.9140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/16/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Rodent pests can inflict devastating impacts on agriculture and the environment, leading to significant economic damage associated with their high species diversity, reproductive rates and adaptability. Fertility control methods could indirectly control rodent pest populations as well as limit ecological consequences and environmental concerns caused by lethal chemical poisons. Brandt's voles, which are common rodent pests found in the grasslands of middle-eastern Inner Mongolia, eastern regions of Mongolia, and some regions of southern Russia, were assessed in the present study. METHODS We evaluated the effects of a 2-mg/kg dose of levonorgestrel and quinestrol and a 1:1 mixture of the two (EP-1) on reproductive behavior as well as changes in the reproductive system, reproductive hormone levels, and toxicity in Brandt's voles. RESULTS Our results revealed that all three fertility control agents can cause reproductive inhibition at a dosage of 2 mg/kg. However, quinestrol caused a greater degree of toxicity, as determined by visible liver damage and reduced expression of the detoxifying molecule CYP1A2. Of the remaining two fertility control agents, EP-1 was superior to levonorgestrel in inhibiting the secretion of follicle-stimulating hormone and causing reproductive inhibition. We believe that these findings could help promote the use of these fertility control agents and, in turn, reduce the use of chemical poisons and limit their detrimental ecological and environmental impacts.
Collapse
Affiliation(s)
- Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihong Ji
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zishi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Su Q, Chen Y, Qin J, Li H, Liu M, Zhang Z, Liu Q. Ratio-dependent effects of quinestrol and levonorgestrel compounds (EP-1) on reproductive parameters of adult male Swiss mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:181-186. [PMID: 31519253 DOI: 10.1016/j.pestbp.2019.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Fertility control is considered as the second-generation pest rodent management strategy. Most previous studies have focused on the dosage-dependent effects of quinestrol and levonorgestrel compounds (EP-1) at a ratio of 1:2, but the ratio-dependent effects of EP-1 have not been fully investigated, especially in male rodents. To test the ratio-dependent antifertility effects of EP-1 with different ratios (1:2, 1:1, and 2:1) on male Swiss outbred strain of laboratory mice, forty male mice were randomly assigned into four groups (n = 10). Mice in the three treatment groups were provided one of the three EP-1 mixture compounds for 3 successive days via gavage at a dosage of 50 mg/kg(body weight), and then all mice were sacrificed 15 days after the gavage treatment. Reproductive organ weights, sperm density and motility, levels of testosterone (T), estradiol (E2), luteinizing hormone (LH), and follicle stimulating hormone (FSH) in serum and/or testis, and androgen receptor (AR), estrogen receptor α (ERα), estrogen receptor β (ERβ), luteinizing hormone receptor (LHR), and aromatase in testis were determined. Each of the ratios of quinestrol and levonorgestrel significantly decreased the density and motility of sperm and induced atrophy of the epididymis and seminal vesicle. The combination of compounds also significantly reduced serum T and LH levels, increased testicular T levels and decreased testicular estradiol ERβ and aromatase levels. EP-1 delivered at a ratio of 1:1 induced the most significant effects on the reproductive parameters assessed and shows the potential for use in fertility control of male rodents.
Collapse
Affiliation(s)
- Qianqian Su
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China
| | - Yi Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China
| | - Jiao Qin
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China
| | - Hongjun Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Ming Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 510260 Guangzhou, China.
| |
Collapse
|
5
|
Su QQ, Chen Y, Qin J, Wang TL, Wang DH, Liu QS. Effects of mifepristone and quinestrol on the fertility of female Brandt’s voles (Lasiopodomys brandtii) in different reproductive phases. ANIM BIOL 2016. [DOI: 10.1163/15707563-00002492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mifepristone and quinestrol are effective drugs for controlling rodent fertility, but their inhibitory effectiveness during premating, early pregnancy, and late pregnancy is unknown. In this study, six groups of eight female Brandt’s voles (Lasiopodomys brandtii) were administered with mifepristone, quinestrol, or a control for three days during premating, early pregnancy, or late pregnancy. In the mifepristone-treated groups, the premating females bred, whereas the early and late pregnant females did not. The reproductive rate, litter size, average body mass at birth, and survival rate of pups did not significantly differ between the mifepristone-treated premating group and the control group. By contrast, quinestrol treatment completely inhibited fertility during the three reproductive phases. In addition, fertility was not completely restored in the second pairing. The reproductive rates were higher for mifepristone, both during early and late pregnancy, than for quinestrol, but both were lower than the control. Thus, mifepristone and quinestrol both inhibited the fertility of female Brandt’s voles at different reproductive periods. These results suggest that these two sterilants could be delivered during the reproductive season of the target pest animal.
Collapse
Affiliation(s)
- Qian-Qian Su
- Guangdong Entomological Institute, 510260 Guangzhou, China
| | - Yi Chen
- Guangdong Entomological Institute, 510260 Guangzhou, China
| | - Jiao Qin
- Guangdong Entomological Institute, 510260 Guangzhou, China
| | - Tong-Liang Wang
- College of Life Science, Hainan Normal University, 571158 Haikou, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insect and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Quan-Sheng Liu
- Guangdong Entomological Institute, 510260 Guangzhou, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, 510260 Guangzhou, China
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, 510260 Guangzhou, China
| |
Collapse
|