1
|
Xue H, Yu A, Zhang L, Chen L, Guo Q, Lin M, Lin N, Chen X, Xu L, Huang H. Genetic testing for fetal loss of heterozygosity using single nucleotide polymorphism array and whole-exome sequencing. Sci Rep 2024; 14:2190. [PMID: 38273042 PMCID: PMC10810965 DOI: 10.1038/s41598-024-52812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024] Open
Abstract
The study explored the clinical significance of fetal loss of heterozygosity (LOH) identified by single-nucleotide polymorphism array (SNP array). We retrospectively reviewed data from pregnant women who underwent invasive diagnostic procedures at prenatal diagnosis centers in southeastern China from December 2016 to December 2021. SNP array was performed by the Affymetrix CytoScan 750 K array platform. Fetuses with LOH were further identified by parental verification, MS-MLPA, and/or trio whole-exome sequencing (trio-WES). The genetic results, fetal clinical manifestations, and perinatal outcome were analyzed. Of 11,062 fetuses, 106 (0.96%) had LOH exhibiting a neutral copy number, 88 (83.0%) had LOH in a single chromosome, whereas 18 (17.0%) had multiple LOHs on different chromosomes. Sixty-six fetuses had ultrasound anomalies (UAs), most frequently fetal growth restriction (18/66 (27.3%)). Parental SNP array verification was performed in 21 cases and trio-WES in 21 cases. Twelve cases had clinically relevant uniparental disomy, five had pathogenic variants, four had likely pathogenic variants, six had variants of unknown significance, and eight had identity by descent. The rate of adverse pregnancy outcomes in fetuses with LOH and UAs (24/66 (36.4%)) was higher than in those without UAs (6/40 (15.0%)) (p < 0.05). LOH is not uncommon. Molecular genetic testing techniques, including parental SNP array verification, trio-WES, methylation-specific multiplex ligation-dependent probe amplification, regular and systematic ultrasonic monitoring, and placental study, can accurately assess the prognosis and guide the management of the affected pregnancy.
Collapse
Affiliation(s)
- Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Aili Yu
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Lin Zhang
- Fujian Medical University, No. 88 Jiaotong Road, Cangshan District, Fuzhou City, 350001, Fujian Province, China
| | - Lingji Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Qun Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Min Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
2
|
Hu J, Zhang Y, Yang Y, Wang L, Sun Y, Dong M. Case report: Prenatal diagnosis of Kagami–Ogata syndrome in a Chinese family. Front Genet 2022; 13:959666. [PMID: 36035167 PMCID: PMC9410364 DOI: 10.3389/fgene.2022.959666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this work was to explore the genetic cause of the proband (Ⅲ2) presenting with polyhydramnios and gastroschisis. Copy number variation sequencing (CNV-seq), methylation-specific multiplex PCR (MS-PCR), and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) were used to characterize the genetic etiology. CNV-seq revealed a deletion of 732.26 kb at 14q32.2q32.31 in the proband (Ⅲ2) and its mother (Ⅱ2). MS-PCR showed the maternal allele was missing in the proband, while paternal allele was missing in its mother. MS-MLPA showed deletion of the DLK1, MEG3, MIR380, and RTL1 genes of both the proband and its mother. MEG3 imprinting gene methylation increased in the proband, while decreased in its mother. It was indicated that a maternally transmitted deletion was responsible for Kagami–Ogata syndrome in the proband (Ⅲ2), and the de novo paternal deletion resulted in Temple syndrome in the mother (Ⅱ2). Prenatal diagnosis was provided at 17+3 weeks of pregnancy on the mother’s fourth pregnancy (Ⅲ4). Fortunately, the karyotype and single-nucleotide polymorphism array (SNP array) results were normal. The current investigation provided the detection methods for imprinted gene diseases, expanded the phenotype spectrum of the disease, and obtained the insight into the diagnosis, prenatal diagnosis, and genetic counseling of the disease.
Collapse
Affiliation(s)
- Junjie Hu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanmei Yang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liya Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yixi Sun
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minyue Dong
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Minyue Dong,
| |
Collapse
|
3
|
Sakaria RP, Mostafavi R, Miller S, Ward JC, Pivnick EK, Talati AJ. Kagami-Ogata Syndrome: Case Series and Review of Literature. AJP Rep 2021; 11:e65-e75. [PMID: 34055463 PMCID: PMC8159623 DOI: 10.1055/s-0041-1727287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Kagami-Ogata syndrome (KOS) (OMIM #608149) is a genetic imprinting disorder affecting chromosome 14 that results in a characteristic phenotype consisting of typical facial features, skeletal abnormalities including rib abnormalities described as "coat hanger ribs," respiratory distress, abdominal wall defects, polyhydramnios, and developmental delay. First identified by Wang et al in 1991, over 80 cases of KOS have been reported in the literature. KOS, however, continues to remain a rare and potentially underdiagnosed disorder. In this report, we describe two unrelated male infants with differing initial presentations who were both found to have the characteristic "coat hanger" rib appearance on chest X-ray, raising suspicion for KOS. Molecular testing confirmed KOS in each case. In addition to these new cases, we reviewed the existing cases reported in literature. Presence of polyhydramnios, small thorax, curved ribs, and abdominal wall defects must alert the perinatologist toward the possibility of KOS to facilitate appropriate molecular testing. The overall prognosis of KOS remains poor. Early diagnosis allows for counseling by a multidisciplinary team and enables parents to make informed decisions regarding both pregnancy management and postnatal care.
Collapse
Affiliation(s)
- Rishika P Sakaria
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Roya Mostafavi
- Department of Oncology, Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Miller
- Department of Radiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Pediatrics, Division of Medical Genetics, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Jewell C Ward
- Department of Pediatrics, Division of Medical Genetics, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Eniko K Pivnick
- Department of Pediatrics, Division of Medical Genetics, University of Tennessee Health Sciences Center, Memphis, Tennessee.,Department of Ophthalmology, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Ajay J Talati
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
4
|
Liu J, He Z, Lin S, Wang Y, Huang L, Huang X, Luo Y. Absence of heterozygosity detected by single-nucleotide polymorphism array in prenatal diagnosis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 57:314-323. [PMID: 31840905 DOI: 10.1002/uog.21951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/19/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES To investigate the general occurrence and clinical significance of absence of heterozygosity (AOH), detected by single-nucleotide polymorphism (SNP) array on prenatal diagnosis. METHODS We recruited pregnancies undergoing invasive prenatal diagnosis at our fetal medicine center over a 6-year period. All fetuses underwent SNP array using the Affymetrix CytoScan HD array platform. AOH was defined as a chromosomal homozygosity segment with neutral copy number. Cases with AOH over 10 Mb in size or with suspected pathogenicity were further analyzed, and the clinical features and outcome were reviewed. RESULTS Of 10 294 recruited fetuses, 100 (0.97%) with AOH were identified; in 81 (81.0%) of these, AOH occurred in a single chromosome, while 19 (19.0%) patients had multiple AOHs in different chromosomes. AOH was observed in all chromosomes, chromosomes X, 2 and 16 being the most frequently involved. The length of AOH ranged from partial chromosome (9.002-80.222 Mb) to the entire chromosome. Similar AOH regions displayed varied clinical manifestations. In total, 55 patients presented with concomitant ultrasound abnormalities, the most common being multiple abnormalities (14/55 (25.5%)), genitourinary malformations (8/55 (14.5%)), skeletal malformations (5/55 (9.1%)) and small-for-gestational age (5/55 (9.1%)). Notably, the rate of adverse perinatal outcome (including termination of pregnancy, neonatal death, fetal death, selective reduction and miscarriage) in fetuses with AOH and ultrasound abnormalities (30/48 (62.5%)) was higher than in those without ultrasound abnormalities (6/40 (15.0%)) (P < 0.001). Further non-invasive prenatal testing using cell-free fetal DNA from maternal blood indicated chromosomal copy number abnormalities in 11 patients; however, they were confirmed as AOH by SNP array of the amniotic fluid. CONCLUSIONS Genetic counseling regarding a prenatal diagnosis of AOH remains challenging. To evaluate comprehensively its significance, we propose a management strategy involving further serial ultrasound examinations, parental verification, whole-exome sequencing, placental study and effective follow-up. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- J Liu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Z He
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - S Lin
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Y Wang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - L Huang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - X Huang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Y Luo
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
5
|
Li F, Liu S, Jia B, Wu R, Chang Q. Prenatal Diagnosis of a Mosaic Paternal Uniparental Disomy for Chromosome 14: A Case Report of Kagami-Ogata Syndrome. Front Pediatr 2021; 9:691761. [PMID: 34746047 PMCID: PMC8566877 DOI: 10.3389/fped.2021.691761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022] Open
Abstract
The Kagami-Ogata syndrome (KOS) is a rare imprinting disorder with a distinct clinical phenotype. In KOS, polyhydramnios is associated with a small bell-shaped thorax and coat-hanger ribs. The genetic etiology of KOS includes paternal uniparental disomy 14 [upd(14)pat], epimutations, and microdeletions affecting the maternally derived imprinted region of chromosome 14q32.2. More than 77 cases of KOS have been reported; however, only one mosaic upd(14)pat case has been reported. Here we report a second mosaic upd(14)pat case. The prognosis of upd(14)pat patients is poor because of severe respiratory insufficiency. We summarized prenatal ultrasound findings of KOS to raise awareness of this condition for possible diagnosis of KOS prenatally when polyhydramnios combination with a small bell-shaped thorax and other related features are first observed. Prenatal diagnosis using methylation-specific multiplex ligation-dependent probe amplification (MLPA) or a single-nucleotide polymorphism-based microarray analysis is recommended.
Collapse
Affiliation(s)
- Fenxia Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siping Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bei Jia
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruifeng Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingxian Chang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Wan J, Li R, Zhang Y, Jing X, Yu Q, Li F, Li Y, Zhang L, Yi C, Li J, Li D, Liao C. Pregnancy outcome of autosomal aneuploidies other than common trisomies detected by noninvasive prenatal testing in routine clinical practice. Prenat Diagn 2018; 38:849-857. [PMID: 30078205 DOI: 10.1002/pd.5340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of the study is to report the incidence and pregnancy outcome of autosomal aneuploidies other than common trisomies 21, 18, and 13 detected by noninvasive prenatal testing (NIPT) at a single center. METHODS Pregnant women undergoing NIPT from February 2015 to January 2018 in our center were offered expanded screening to include rare autosomal aneuploidies. Aneuploidies included extra copy chromosomes (most likely trisomies) and decreased copy chromosomes (most likely monosomies). The pregnancy outcomes of women consenting to the expanded NIPT screen were recorded. RESULTS Expanded NIPT was performed in 15 362 pregnancies. A total of 59 autosomal aneuploidies other than the 3 common trisomies were detected, with a positive screening rate of 0.38% (59/15 362). The screen positive rate was higher in women aged above 35 years than in those younger (0.44% vs 0.32%, P < .05). Of the screen positive results, 30.5% (18/59) were because of extra copies for chromosomes trisomy 7, 10.2% (6/59) for chromosome 22, and 8.5% (5/59) for chromosomes 8 and 16 respectively, while other choromosomes were less frequently involved. Decreased copy chromosomes were less common: 6.8% (4/59) for chromosomes 14 and 13. Mixed aneuploidies with increased copies for some chromosomes and decreased copies for others were also noted. Invasive prenatal diagnosis was performed in 61% (36/59) of the cases. Invasive test results and clinical follow-ups demonstrated that most (94.9%, 56/59) of the rare aneuploidies were false positives, probably resulting from confined placental mosaicism. Only 1 case (1.7%, 1/59) with NIPT report of extra copies of chromosome 7 and without ultrasound evidence of fetal abnormality was confirmed to be fetal mosaicism by microarray test. Uniparental disomy of whole chromosome 2 was identified by microarray analysis in 1 case with extra copy chromosome 2 detected by NIPT. Loss of heterozygocity of chromosome 7q11.23-q21.11 was detected in another case with extra copy chromosome 7. Fortunately, pregnancy outcomes of both cases were normal. Two fetal deaths attributed to severe fetal growth restriction were associated with extra copies of chromosome 16 at expanded NIPT. CONCLUSIONS Autosomal aneuploidies other than trisomies 21, 18, and 13 are not uncommon in routine clinical NIPT practice. Extra copies of chromosomes in rare cases can be associated with uniparental disomy. Most rare aneuploidies at NIPT have good pregnancy outcomes. Thus, invasive testing should be used with caution for these aneuploidies in routine clinical practice.
Collapse
Affiliation(s)
- Junhui Wan
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yongling Zhang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| | - Xiangyi Jing
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| | - Qiuxia Yu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| | - Fatao Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yan Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| | - Lina Zhang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| | - Cuixing Yi
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| | - Jian Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
7
|
Capkova P, Santava A, Markova I, Stefekova A, Srovnal J, Staffova K, Durdová V. Haploinsufficiency of BMP4 and OTX2 in the Foetus with an abnormal facial profile detected in the first trimester of pregnancy. Mol Cytogenet 2017; 10:47. [PMID: 29299063 PMCID: PMC5745897 DOI: 10.1186/s13039-017-0351-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023] Open
Abstract
Background Interstitial microdeletion 14q22q23 is a rare chromosomal syndrome associated with variable defects: microphthalmia/anophthalmia, pituitary anomalies, polydactyly/syndactyly of hands and feet, micrognathia/retrognathia. The reports of the microdeletion 14q22q23 detected in the prenatal stages are limited and the range of clinical features reveals a quite high variability. Case presentation We report a detection of the microdeletion 14q22.1q23.1 spanning 7,7 Mb and involving the genes BMP4 and OTX2 in the foetus by multiplex ligation-dependent probe amplification (MLPA) and verified by microarray subsequently. The pregnancy was referred to the genetic counselling for abnormal facial profile observed in the first trimester ultrasound scan and micrognathia (suspicion of Pierre Robin sequence), hypoplasia nasal bone and polydactyly in the second trimester ultrasound scan. The pregnancy was terminated on request of the parents. Conclusion An abnormal facial profile detected on prenatal scan can provide a clue to the presence of rare chromosomal abnormalities in the first trimester of pregnancy despite the normal result of the first trimester screening test. The patients should be provided with genetic counselling. Usage of quick and sensitive methods (MLPA, microarray) is preferable for discovering a causal aberration because some of the CNVs cannot be detected with conventional karyotyping in these cases. To the best of our knowledge, this is the earliest detection of this microdeletion (occurred de novo), the first case detected by MLPA and confirmed by microarray. Literature review of the genotype-phenotype correlation in similar reports leads us to the conclusion that dosage imbalance of the chromosomal segment 14q22q23 (especially haploinsuffiency of the genes BMP4 and OTX2) contributes significantly to orofacial abnormalities. Association of the region with the Pierre Robin sequence appears to be plausible.
Collapse
Affiliation(s)
- Pavlina Capkova
- Department of Medical Genetics, University Hospital Olomouc, I.P.Pavlova 6, Olomouc, Czech Republic
| | - Alena Santava
- Department of Medical Genetics, University Hospital Olomouc, I.P.Pavlova 6, Olomouc, Czech Republic
| | - Ivana Markova
- Department of Obstetrics and Gynaecology, University Hospital Olomouc, Olomouc, Czech Republic
| | - Andrea Stefekova
- Department of Medical Genetics, University Hospital Olomouc, I.P.Pavlova 6, Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Katerina Staffova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Veronika Durdová
- Department of Obstetrics and Gynaecology, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
8
|
Li X, Liu Y, Yue S, Wang L, Zhang T, Guo C, Hu W, Kagan KO, Wu Q. Uniparental disomy and prenatal phenotype: Two case reports and review. Medicine (Baltimore) 2017; 96:e8474. [PMID: 29137034 PMCID: PMC5690727 DOI: 10.1097/md.0000000000008474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RATIONALE Uniparental disomy (UPD) gives a description of the inheritance of both homologues of a chromosome pair from the same parent. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. PATIENT CONCERNS We report prenatal phenotypes of 2 rare cases of UPD. DIAGNOSES The prenatal phenotype of case 1 included sonographic markers such as enlarged nuchal translucency (NT), absent nasal bone, short femur and humerus length, and several structural malformations involving Dandy-Walker malformation and congenital heart defects. The prenatal phenotype of Case 2 are sonographic markers, including enlarged NT, thickened nuchal fold, ascites, and polyhydramnios without apparent structural malformations. INTERVENTIONS Conventional G-band karyotype appears normal in case 1, while it shows normal chromosomes with a small supernumerary marker chromosome (sSMC) in case 2. Genetic etiology was left unknown until single-nucleotide polymorphism-based array (SNP-array) was performed, and segmental paternal UPD 22 was identified in case 1 and segmental paternal UPD 14 was found in case 2. OUTCOMES The parents of case 1 chose termination of pregnancy. The neonate of case 2 was born prematurely with a bellshaped small thorax and died within a day. LESSONS UPD cases are rare and the phenotypes are different, which depend on the origin and affected chromosomal part. If a fetus shows multiple anomalies that cannot be attributed to a common aneuploidy or a genetic syndrome, or manifests some features possibly related to an UPD syndrome, such as detection of sSMC, SNP-array should be considered.
Collapse
Affiliation(s)
| | - Yan Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | - Karl-Oliver Kagan
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
9
|
Yuan H, Xie Y, Li Q, Hu X, Li X, Sun X, Zhao W. Paternal Uniparental Disomy of Chromosome 14 with Hypospadias. Cytogenet Genome Res 2016; 148:256-61. [PMID: 27300571 DOI: 10.1159/000446783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 11/19/2022] Open
Abstract
Paternal uniparental disomy 14 (patUPD14) is a distinct, clinically recognizable syndrome. Using a clinical SNP microarray, we identified patUPD14 in a boy with a normal karyotype presenting cardiomyopathy and facial anomalies, a specific configuration of the thoracic ribs ('coat hanger sign'), and hypospadias. Analyses of polymorphic microsatellites confirmed the diagnosis of patUPD14. We discuss the functions of the genes included in the rearrangement and their involvement in the pathogenesis of these disorders, especially hypospadias. ESR2 single nucleotide polymorphisms (rs944050; 2681-4A>G) have been associated with an increased risk of hypospadias in previous studies. The patient's ESR2 (rs944050) genotype is GG, whereas the parents both exhibit an AG genotype. This report sheds light on the genetic phenomenon in which the combination of a polymorphism and UPD can lead to new phenotypes, such as hypospadias.
Collapse
Affiliation(s)
- Haiming Yuan
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
10
|
McCullough LE, Miller EE, Mendez MA, Murtha AP, Murphy SK, Hoyo C. Maternal B vitamins: effects on offspring weight and DNA methylation at genomically imprinted domains. Clin Epigenetics 2016; 8:8. [PMID: 26807160 PMCID: PMC4722751 DOI: 10.1186/s13148-016-0174-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/14/2016] [Indexed: 01/25/2023] Open
Abstract
Background Inadequate maternal nutrition during early fetal development can create permanent alterations in the offspring, leading to poor health outcomes. While nutrients involved in one-carbon cycle metabolism are important to fetal growth, associations with specific nutrients remain inconsistent. This study estimates associations between maternal vitamins B12, B6 (pyridoxal phosphate [PLP] and 4-pyridoxic acid [PA]), and homocysteine (Hcy) concentrations, offspring weight (birth weight and 3-year weight gain), and DNA methylation at four differentially methylated regions (DMRs) known to be involved in fetal growth and development (H19, MEG3, SGCE/PEG10, and PLAGL1). Methods Study participants (n = 496) with biomarker and birth weight data were enrolled as part of the Newborn Epigenetics STudy. Weight gain data were available for 273 offspring. Among 484 mother-infant pairs, DNA methylation at regulatory sequences of genomically imprinted genes was measured in umbilical cord blood DNA using bisulfite pyrosequencing. We used generalized linear models to estimate associations. Results Multivariate adjusted regression models revealed an inverse association between maternal Hcy concentration and male birth weight (β = −210.40, standard error (SE) = 102.08, p = 0.04). The offspring of the mothers in the highest quartile of B12 experienced lower weight gain between birth and 3 years compared to the offspring of the mothers in the lowest (β = −2203.03, SE = 722.49, p = 0.003). Conversely, maternal PLP was associated with higher weight gain in males; higher maternal PLP concentrations were also associated with offspring DNA methylation levels at the MEG3 DMR (p < 0.01). Conclusions While maternal concentrations of B12, B6, and Hcy do not associate with birth weight overall, they may play an important role in 3-year weight gain. This is the first study to report an association between maternal PLP and methylation at the MEG3 DMR which may be an important epigenetic tag for maternal B vitamin adequacy. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0174-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren E McCullough
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC USA ; Lineberger Comprehensive Cancer Center, University of North Carolina Chapel Hill, Chapel Hill, NC USA ; Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, CNR 3037, Atlanta, GA 30322 USA
| | - Erline E Miller
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC USA
| | - Michelle A Mendez
- Department of Nutrition, University of North Carolina Chapel Hill, Chapel Hill, NC USA
| | - Amy P Murtha
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
11
|
Liu W, Zhang H, Wang J, Yu G, Qiu W, Li Z, Chen M, Choy KW, Sun X. Prenatal diagnosis of complete maternal uniparental isodisomy of chromosome 4 in a fetus without congenital abnormality or inherited disease-associated variations. Mol Cytogenet 2015; 8:85. [PMID: 26539248 PMCID: PMC4632482 DOI: 10.1186/s13039-015-0190-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background The prenatal diagnosis of subjects with complete uniparental isodisomy of chromosome 4 (iUPD4) has rarely been reported and poses a great challenge for genetic counseling. In this study, a prenatal case with a high (1 in 58) risk of Down syndrome was diagnosed with iUPD4 by combined chromosomal microarray analysis (CMA), whole exome sequencing (WES) and ultrasound morphology scan. Results By CMA, a pathogenic copy number variant was not detected; however, a complete maternal iUPD4 was identified in this fetus after analyzing the parental genotype results. To detect potentially autosomal recessive variants, WES was performed. Two missense and two frameshift variants were identified but were predicted with uncertain significance; none of the mutations were definitively associated with congenital abnormality or inherited disease. In addition, a detailed ultrasound morphology scan did not identify any structural abnormalities, facial dysmorphisms or intrauterine growth restriction. The family history was unremarkable. The couple was counseled with the prenatal diagnostic results, and they opted to give birth to the child. No phenotypic abnormalities were observed in this child after the first year of life. Conclusion This study provides further evidence that iUPD4 can result in a healthy live birth and demonstrates that the combined use of CMA, WES and ultrasound technology provides additional information for the prenatal diagnosis and clinical management of rare UPD events. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0190-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- WeiQiang Liu
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 P. R. China
| | - HuiMin Zhang
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 P. R. China
| | - Jian Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 P. R. China
| | - GuoJiu Yu
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 P. R. China
| | - WenJun Qiu
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 P. R. China
| | - ZhiHua Li
- Department of Prenatal Diagnosis and Fetal Medical, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 P. R. China
| | - Min Chen
- Department of Prenatal Diagnosis and Fetal Medical, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 P. R. China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - XiaoFang Sun
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 P. R. China
| |
Collapse
|