1
|
Wu X, Wang H, Li S, Luo H, Liu F. Mining glycosylation-related prognostic lncRNAs and constructing a prognostic model for overall survival prediction in glioma: A study based on bioinformatics analysis. Medicine (Baltimore) 2023; 102:e33569. [PMID: 37145002 PMCID: PMC10158895 DOI: 10.1097/md.0000000000033569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Dysregulation of protein glycosylation plays a crucial role in the development of glioma. Long noncoding RNA (lncRNAs), functional RNA molecules without protein-coding ability, regulate gene expression and participate in malignant glioma progression. However, it remains unclear how lncRNAs are involved in glycosylation glioma malignancy. Identification of prognostic glycosylation-related lncRNAs in gliomas is necessary. We collected RNA-seq data and clinicopathological information of glioma patients from the cancer genome atlas and Chinese glioma genome atlas. We used the "limma" package to explore glycosylation-related gene and screened related lncRNAs from abnormally glycosylated genes. Using univariate Cox analyses Regression and least absolute shrinkage and selection operator analyses, we constructed a risk signature with 7 glycosylation-related lncRNAs. Based on the median risk score (RS), patients with gliomas were divided into low- and high-risk subgroups with different overall survival rates. Univariate and multivariate Cox analyses regression analyses were performed to assess the independent prognostic ability of the RS. Twenty glycosylation-related lncRNAs were identified by univariate Cox regression analyses. Two glioma subgroups were identified using consistent protein clustering, with the prognosis of the former being better than that of the latter. Least absolute shrinkage and selection operator analysis identified 7 survival RSs for glycosylation-related lncRNAs, which were identified as independent prognostic markers and predictors of glioma clinicopathological features. Glycosylation-related lncRNAs play an important role in the malignant development of gliomas and may help guide treatment options.
Collapse
Affiliation(s)
- Xiang Wu
- Department of Neurosurgery, Jiangxi Provincial Children’s Hospital, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Haiyan Wang
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Department of Operation, The Second Affiliated Hospital of Nanchang University
| | - Shiqi Li
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Haitao Luo
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Feng Liu
- Department of Neurosurgery, Jiangxi Provincial Children’s Hospital, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Using Single-Cell RNA Sequencing and MicroRNA Targeting Data to Improve Colorectal Cancer Survival Prediction. Cells 2023; 12:cells12020228. [PMID: 36672162 PMCID: PMC9856396 DOI: 10.3390/cells12020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer has proven to be difficult to treat as it is the second leading cause of cancer death for both men and women worldwide. Recent work has shown the importance of microRNA (miRNA) in the progression and metastasis of colorectal cancer. Here, we develop a metric based on miRNA-gene target interactions, previously validated to be associated with colorectal cancer. We use this metric with a regularized Cox model to produce a small set of top-performing genes related to colon cancer. We show that using the miRNA metric and a Cox model led to a meaningful improvement in colon cancer survival prediction and correct patient risk stratification. We show that our approach outperforms existing methods and that the top genes identified by our process are implicated in NOTCH3 signaling and general metabolism pathways, which are essential to colon cancer progression.
Collapse
|
3
|
Ford LC, Jang S, Chen Z, Zhou YH, Gallins PJ, Wright FA, Chiu WA, Rusyn I. A Population-Based Human In Vitro Approach to Quantify Inter-Individual Variability in Responses to Chemical Mixtures. TOXICS 2022; 10:toxics10080441. [PMID: 36006120 PMCID: PMC9413237 DOI: 10.3390/toxics10080441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023]
Abstract
Human cell-based population-wide in vitro models have been proposed as a strategy to derive chemical-specific estimates of inter-individual variability; however, the utility of this approach has not yet been tested for cumulative exposures in mixtures. This study aimed to test defined mixtures and their individual components and determine whether adverse effects of the mixtures were likely to be more variable in a population than those of the individual chemicals. The in vitro model comprised 146 human lymphoblastoid cell lines from four diverse subpopulations of European and African descent. Cells were exposed, in concentration−response, to 42 chemicals from diverse classes of environmental pollutants; in addition, eight defined mixtures were prepared from these chemicals using several exposure- or hazard-based scenarios. Points of departure for cytotoxicity were derived using Bayesian concentration−response modeling and population variability was quantified in the form of a toxicodynamic variability factor (TDVF). We found that 28 chemicals and all mixtures exhibited concentration−response cytotoxicity, enabling calculation of the TDVF. The median TDVF across test substances, for both individual chemicals or defined mixtures, ranged from a default assumption (101/2) of toxicodynamic variability in human population to >10. The data also provide a proof of principle for single-variant genome-wide association mapping for toxicity of the chemicals and mixtures, although replication would be necessary due to statistical power limitations with the current sample size. This study demonstrates the feasibility of using a set of human lymphoblastoid cell lines as an in vitro model to quantify the extent of inter-individual variability in hazardous properties of both individual chemicals and mixtures. The data show that population variability of the mixtures is unlikely to exceed that of the most variable component, and that similarity in genome-wide associations among components may be used to accrue additional evidence for grouping of constituents in a mixture for cumulative assessments.
Collapse
Affiliation(s)
- Lucie C. Ford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (L.C.F.); (S.J.); (Z.C.); (W.A.C.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Suji Jang
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (L.C.F.); (S.J.); (Z.C.); (W.A.C.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Zunwei Chen
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (L.C.F.); (S.J.); (Z.C.); (W.A.C.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yi-Hui Zhou
- Departments of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; (Y.-H.Z.); (F.A.W.)
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA;
| | - Paul J. Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA;
| | - Fred A. Wright
- Departments of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; (Y.-H.Z.); (F.A.W.)
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA;
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (L.C.F.); (S.J.); (Z.C.); (W.A.C.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (L.C.F.); (S.J.); (Z.C.); (W.A.C.)
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +979-458-9866
| |
Collapse
|
4
|
Rezaie N, Bayati M, Hamidi M, Tahaei MS, Khorasani S, Lovell NH, Breen J, Rabiee HR, Alinejad-Rokny H. Somatic point mutations are enriched in non-coding RNAs with possible regulatory function in breast cancer. Commun Biol 2022; 5:556. [PMID: 35672401 PMCID: PMC9174258 DOI: 10.1038/s42003-022-03528-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) form a large portion of the mammalian genome. However, their biological functions are poorly characterized in cancers. In this study, using a newly developed tool, SomaGene, we analyze de novo somatic point mutations from the International Cancer Genome Consortium (ICGC) whole-genome sequencing data of 1,855 breast cancer samples. We identify 1030 candidates of ncRNAs that are significantly and explicitly mutated in breast cancer samples. By integrating data from the ENCODE regulatory features and FANTOM5 expression atlas, we show that the candidate ncRNAs significantly enrich active chromatin histone marks (1.9 times), CTCF binding sites (2.45 times), DNase accessibility (1.76 times), HMM predicted enhancers (2.26 times) and eQTL polymorphisms (1.77 times). Importantly, we show that the 1030 ncRNAs contain a much higher level (3.64 times) of breast cancer-associated genome-wide association (GWAS) single nucleotide polymorphisms (SNPs) than genome-wide expectation. Such enrichment has not been seen with GWAS SNPs from other cancers. Using breast cell line related Hi-C data, we then show that 82% of our candidate ncRNAs (1.9 times) significantly interact with the promoter of protein-coding genes, including previously known cancer-associated genes, suggesting the critical role of candidate ncRNA genes in the activation of essential regulators of development and differentiation in breast cancer. We provide an extensive web-based resource (https://www.ihealthe.unsw.edu.au/research) to communicate our results with the research community. Our list of breast cancer-specific ncRNA genes has the potential to provide a better understanding of the underlying genetic causes of breast cancer. Lastly, the tool developed in this study can be used to analyze somatic mutations in all cancers. The SomaGene tool is developed to identify non-coding RNAs (ncRNAs) mutated in breast cancer but can be used for other cancers. Candidate ncRNAs are shown to be enriched for regulatory features and to contain specific trait loci polymorphisms.
Collapse
Affiliation(s)
- Narges Rezaie
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, 92697, USA
| | - Masroor Bayati
- Bioinformatics and Computational Biology Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, 11365, Iran
| | - Mehrab Hamidi
- Bioinformatics and Computational Biology Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, 11365, Iran
| | - Maedeh Sadat Tahaei
- Bioinformatics and Computational Biology Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, 11365, Iran
| | - Sadegh Khorasani
- Bioinformatics and Computational Biology Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, 11365, Iran
| | - Nigel H Lovell
- Tyree Institute of Health Engineering and The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - James Breen
- South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, 5006, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, SA, 5006, Australia
| | - Hamid R Rabiee
- Bioinformatics and Computational Biology Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, 11365, Iran.
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia. .,UNSW Data Science Hub, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia. .,Health Data Analytics Program, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
5
|
Locy H, Verhulst S, Cools W, Waelput W, Brock S, Cras L, Schiettecatte A, Jonckheere J, van Grunsven LA, Vanhoeij M, Thielemans K, Breckpot K. Assessing Tumor-Infiltrating Lymphocytes in Breast Cancer: A Proposal for Combining Immunohistochemistry and Gene Expression Analysis to Refine Scoring. Front Immunol 2022; 13:794175. [PMID: 35222378 PMCID: PMC8876933 DOI: 10.3389/fimmu.2022.794175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Scoring of tumor-infiltrating lymphocytes (TILs) in breast cancer specimens has gained increasing attention, as TILs have prognostic and predictive value in HER2+ and triple-negative breast cancer. We evaluated the intra- and interrater variability when scoring TILs by visual inspection of hematoxylin and eosin-stained tissue sections. We further addressed whether immunohistochemical staining of these sections for immune cell surface markers CD45, CD3, CD4, and CD8 and combination with nanoString nCounter® gene expression analysis could refine TIL scoring. Formalin-fixed paraffin-embedded and fresh-frozen core needle biopsies of 12 female and treatment-naive breast cancer patients were included. Scoring of TILs was performed twice by three independent pathologists with a washout period of 3 days. Increasing intra- and interrater variability was observed with higher TIL numbers. The highest reproducibility was observed on tissue sections stained for CD3 and CD8. The latter TIL scores correlated well with the TIL scores obtained through nanoString nCounter® gene expression analysis. Gene expression analysis also revealed 104 and 62 genes that are positively and negatively related to both TIL scores. In conclusion, integration of immunohistochemistry and gene expression analysis is a valuable strategy to refine TIL scoring in breast tumors.
Collapse
Affiliation(s)
- Hanne Locy
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Hanne Locy, ; Karine Breckpot,
| | | | - Wilfried Cools
- Interfaculty Center Data processing and Statistics, VUB, Brussels, Belgium
| | - Wim Waelput
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Stefanie Brock
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Louise Cras
- Department of Anatomo-Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | | | | | | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Hanne Locy, ; Karine Breckpot,
| |
Collapse
|
6
|
Liu J, Geng R, Yang S, Shao F, Zhong Z, Yang M, Ni S, Cai L, Bai J. Development and Clinical Validation of Novel 8-Gene Prognostic Signature Associated With the Proportion of Regulatory T Cells by Weighted Gene Co-Expression Network Analysis in Uterine Corpus Endometrial Carcinoma. Front Immunol 2021; 12:788431. [PMID: 34970268 PMCID: PMC8712567 DOI: 10.3389/fimmu.2021.788431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
Background Uterine corpus endometrial carcinoma (UCEC) is a gynecological malignant tumor with low survival rate and poor prognosis. The traditional clinicopathological staging is insufficient to estimate the prognosis of UCEC. It is necessary to select a more effective prognostic signature of UCEC to predict the prognosis and immunotherapy effect of UCEC. Methods CIBERSORT and weighted correlation network analysis (WGCNA) algorithms were combined to screen modules related to regulatory T (Treg) cells. Subsequently, univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were used to identify the genes in key modules. The difference in overall survival (OS) between high- and low-risk patients was analyzed by Kaplan-Meier analysis. The Tregs-related risk signature (TRRS) was screened by uni- and multivariate Cox analyses. Afterward, we analyzed the expression difference of TRRS and verified its ability to predict the prognosis of UCEC and the effect of immunotherapy. Results Red module has the highest correlation with Tregs among all clustered modules. Pathways enrichment indicated that the related processes of UCEC were primarily associated to the immune system. Eight genes (ZSWIM1, NPRL3, GOLGA7, ST6GALNAC4, CDC16, ITPK1, PCSK4, and CORO1B) were selected to construct TRRS. We found that this TRRS is a significantly independent prognostic factor of UCEC. Low-risk patients have higher overall survival than high-risk patients. The immune status of different groups was different, and tumor-related pathways were enriched in patients with higher risk score. Low-risk patients are more likely take higher tumor mutation burden (TMB). Meanwhile, they are more sensitive to chemotherapy than patients with high-risk score, which indicated a superior prognosis. Immune checkpoints such as PD-1, CTLA4, PD-L1, and PD-L2 all had a higher expression level in low-risk group. TRRS expression really has a relevance with the sensitivity of UCEC patients to chemotherapeutic drugs. Conclusion We developed and validated a TRRS to estimate the prognosis and reflect the immune status of UCEC, which could accurately assess the prognosis of patients with UCEC and supply personalized treatments for them.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Geng
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Fang Shao
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Zihang Zhong
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Min Yang
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Senmiao Ni
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Lixin Cai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Chang L, Bian Z, Xiong X, Liu J, Wang D, Zhou F, Zhang J, Zhang Y. Long Non-coding RNA LINC00320 Inhibits Tumorigenicity of Glioma Cells and Angiogenesis Through Downregulation of NFKB1-Mediated AQP9. Front Cell Neurosci 2021; 14:542552. [PMID: 33414706 PMCID: PMC7782426 DOI: 10.3389/fncel.2020.542552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
The inhibitory effect of long intergenic non-coding RNA 00320 (LINC00320) in glioma cell proliferation has been proposed in a recent study. However, the mechanisms by which LINC00320 regulate aquaporin 9 (AQP9) in glioma require further exploration. Hence, this study aims to investigate effects of LINC00320 on tumorigenicity of glioma cells and angiogenesis of microvascular endothelial cells (MVECs). Expression of LINC00320 and AQP9 in glioma tissues and cells was measured by reverse transcription–quantitative polymerase chain reaction and Western blot analysis. The relationship among LINC00320, nuclear factor κB subunit 1 (NFKB1) and AQP9 was examined by RNA immunoprecipitation, dual-luciferase reporter gene, and chromatin immunoprecipitation assays. The participation of LINC00320 and AQP9 in glioma cell proliferation and MVEC angiogenesis was analyzed using gain- and loss-of-function approaches. Finally, a nude mouse orthotopic xenograft model of glioma was established to investigate the effects of LINC00320 and AQP9 on glioma growth in vivo. LINC00320 was under-expressed and AQP9 was over-expressed in glioma tissues. Further mechanistic investigation showed that LINC00320 downregulated AQP9 by inhibiting the recruitment of NFKB1 to the promoter region of AQP9. LINC00320 overexpression or AQP9 silencing inhibited the proliferation of glioma cells and angiogenesis of MVECs. Also, upregulation of LINC00320 restrained tumor growth and angiogenesis in xenograft mice by downregulating AQP9. Taken together, LINC00320 acts as a tumor suppressor in glioma, thus presenting a novel therapeutic target.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhe Bian
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Xin Xiong
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jian Liu
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Dali Wang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Fuling Zhou
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jiang Zhang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yunhe Zhang
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
8
|
Zhang K, Zhao H, Zhang K, Hua C, Qin X, Xu S. Chromatin-regulating genes are associated with postoperative prognosis and isocitrate dehydrogenase mutation in astrocytoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1594. [PMID: 33437793 PMCID: PMC7791220 DOI: 10.21037/atm-20-7229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Abnormality in chromatin regulation is a major determinant in the progression of multiple neoplasms. Astrocytoma is a malignant histologic morphology of glioma that is commonly accompanied by chromatin dysregulation. However, the systemic interpretation of the expression characteristics of chromatin-regulating genes in astrocytoma is unclear. Methods In this study, we investigated the expression profile of chromatin regulation genes in 194 astrocytoma patients sourced from The Cancer Genome Atlas (TCGA) database. The relevance of gene expression and postoperative survival outcomes was assessed. Results Based on the expression patterns of chromatin regulation genes, two primary clusters and three subclusters with significantly different survival outcomes were identified. The patients in cluster_1 (or subcluster_1) had a poorer prognosis than the other groups, and this particular cohort were older, with a more advanced grade of tumor and isocitrate dehydrogenase-wildtype distribution. Detection of the differentially expressed genes revealed that the group with poor prognosis was characterized by downregulation of H2AFY2, WAC, HDAC5, ZMYND11, TET1, SATB1, and MYST4, and overexpression of EYA4. Moreover, all eight genes were significantly correlated with overall survival (OS) in astrocytoma. Age-associated genes were investigated and the expression levels of EYA4, TET1, SATB1, WAC, ZMYND11, and H2AFY2 were found to be closely correlated with advanced age. Regression analysis suggested that the expression levels of H2AFY2, HILS1, EYA1, EYA4, and KDM5B were independently associated with IDH mutation status. The differential expressions of 34 common genes were significantly associated with age, grade, and IDH mutant. Conclusions The study revealed that the expression pattern of chromatin regulation genes was significantly associated with postoperative prognosis in astrocytoma. Moreover, the differential expression of particular genes was strongly associated with clinical characteristics such as age, grade, and IDH subtype. These results suggest that the genes involved in chromatin regulation play important roles in the biological process of astrocytoma progression, and these molecules could potentially serve as therapeutic targets in astrocytoma.
Collapse
Affiliation(s)
- Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Hongguang Zhao
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, China
| | - Kewei Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Cong Hua
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xiaowei Qin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Songbai Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Yang L, Tan W, Yang X, You Y, Wang J, Wen G, Zhong J. Sorting nexins: A novel promising therapy target for cancerous/neoplastic diseases. J Cell Physiol 2020; 236:3317-3335. [PMID: 33090492 DOI: 10.1002/jcp.30093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Sorting nexins (SNXs) are a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins containing the PX domain proteins. The function of SNX proteins in regulating intracellular protein trafficking consists of endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX proteins are demonstrated to be involved in several cancerous/neoplastic diseases. Here, we review the accumulated evidence of the molecular structure and biological function of SNX proteins and discuss the regulatory role of SNX proteins in distinct cancerous/neoplastic diseases. SNX family proteins may be a valuable potential biomarker and therapeutic strategy for diagnostics and treatment of cancerous/neoplastic diseases.
Collapse
Affiliation(s)
- Lu Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Weihua Tan
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Emergency Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinzhi Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yong You
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jing Wang
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Gebo Wen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Zhong
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
10
|
Li W, Deng G, Zhang J, Hu E, He Y, Lv J, Sun X, Wang K, Chen L. Identification of breast cancer risk modules via an integrated strategy. Aging (Albany NY) 2019; 11:12131-12146. [PMID: 31860871 PMCID: PMC6949069 DOI: 10.18632/aging.102546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common malignant cancers among females worldwide. This complex disease is not caused by a single gene, but resulted from multi-gene interactions, which could be represented by biological networks. Network modules are composed of genes with significant similarities in terms of expression, function and disease association. Therefore, the identification of disease risk modules could contribute to understanding the molecular mechanisms underlying breast cancer. In this paper, an integrated disease risk module identification strategy was proposed according to a multi-objective programming model for two similarity criteria as well as significance of permutation tests in Markov random field module score, function consistency score and Pearson correlation coefficient difference score. Three breast cancer risk modules were identified from a breast cancer-related interaction network. Genes in these risk modules were confirmed to play critical roles in breast cancer by literature review. These risk modules were enriched in breast cancer-related pathways or functions and could distinguish between breast tumor and normal samples with high accuracy for not only the microarray dataset used for breast cancer risk module identification, but also another two independent datasets. Our integrated strategy could be extended to other complex diseases to identify their risk modules and reveal their pathogenesis.
Collapse
Affiliation(s)
- Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Gui Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ji Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Erqiang Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|