1
|
Wang C, Chen L, Ma S, Bai R, Xu Q, Feng R, Bian C, Zhang L, Su X. Biological effects of baicalin on the ovine mammary cells and regulatory mechanism study by transcriptomic analysis. Genomics 2025; 117:111012. [PMID: 39909133 DOI: 10.1016/j.ygeno.2025.111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/14/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Baicalin is a natural flavonoid compound with a wide range of biological activities, including anti-oxidant and anti-inflammatory properties. Previous we found that the abundance of baicalin in bovine serum is significantly higher than in ovine serum at mid-lactation. It suggests that baicalin may play a role in the regulation of lactation performance. Here, the biological effects of baicalin on proliferative, oxidative stress response, synthesis capacities of major milk components of ovine mammary epithelial cells (OMECs) were investigated. And the transcriptomic analysis was utilized to explore the possible regulatory mechanism. Results showed that 25 μg/mL baicalin can significantly enhance the proliferation, antioxidant, triglyceride and lactose synthesis capacities of OMECs. In transcriptomic analysis, 150 differentially expressed genes (DEGs) were screened between 25 μM baicalin treated (Baicalin) and 0 μM baicalin treated (NT) groups. Functional analysis of DEGs showed that lipid metabolic process, response to oxidative stress, biosynthesis of fat and saccharide pathways were enriched. qRT-PCR result showed that antioxidation-related negative regulatory gene MPO was significantly down-regulated and milk fat biosynthesis related genes PLA2G12A, GPCPD1, LPIN1, FASN and lactose biosynthesis related genes MGEA5, RHOQ were significantly up-regulated in baicalin treated OMECs (P < 0.01). In summarize, 25 μM baicalin can significantly enhance the proliferation, antioxidant and biosynthesis of milk fat and lactose capacities through lipid metabolic process, response to oxidative stress, biosynthesis of fat and saccharide pathways related genes regulation in OMECs. The study would provide a theoretical basis for the improvement of lactation performance and the exploration of lactation regulation theory of dairy sheep.
Collapse
Affiliation(s)
- Chunwei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Liqiang Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Sijia Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Ruixue Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Quanzhong Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Rui Feng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Chao Bian
- Tumor radiotherapy department, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, 010017, PR China
| | - Liguo Zhang
- Ulanqab Animal Husbandry Workstation, Ulanqab Agriculture and Animal Husbandry Bureau, Ulanqab, Inner Mongolia Autonomous Region, 012000, PR China
| | - Xiaohu Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
2
|
Ren F, Yang M, Liu G, Qi Y, Li A, Li J, Zheng L. SIRT5-mediated PRKAA2 succinylation ameliorates apoptosis of human placental trophoblasts in hypertensive disorder complicating pregnancy. Clin Exp Hypertens 2024; 46:2358030. [PMID: 38785262 DOI: 10.1080/10641963.2024.2358030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Hypertensive disorder complicating pregnancy (HDCP) is a serious clinical disorder syndrome during pregnancy. This study aims at finding novel targets for HDCP therapy. METHODS HDCP-related mRNAs were firstly screened out and subjected to gene enrichment analysis. We chose protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2) as the research object. Thirty-nine HDCP patients at 32 to 40 weeks of gestation were selected as the HDCP group, and 39 normal controls who received cesarean section delivery at 37-42 weeks of pregnancy were enrolled in this study. Chorionic villi samples were collected within 30 min of delivery. The apoptosis of isolated placental trophoblasts was monitored to investigate the regulatory role of PRKAA2. RESULTS PRKAA2 expression was further proven to be enhanced in the placental tissues of HDCP patients compared with that of normal puerpera. Subsequently, the results of flow cytometry analysis and western blot indicated that PRKAA2 overexpression accelerated primary placental cell apoptosis, while its knockdown attenuated cell apoptosis. Mechanistically, we determined that the level of PRKAA2 succinylation was elevated in the placental tissue of HDCP patients. Through in vitro succinylation assay and mutagenesis, we confirmed that sirtuin 5 (SIRT5) interacts with PRKAA2 at K69 and K260 to induce PRKAA2 desuccinylation. SIRT5 regulated primary HDCP cell apoptosis through PRKAA2. Finally, the animal study revealed that PRKAA2 elevates the systolic blood pressure of HDCP rat model. CONCLUSION Our findings indicated that SIRT5-mediated PRKAA2 succinylation modulates placental cell apoptosis in HDCP, suggesting that PRKAA2 is a potential therapeutic target for HDCP treatment.
Collapse
Affiliation(s)
- Feifei Ren
- Department of Obstetrics, Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Mo Yang
- Department of Obstetrics, Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Guangman Liu
- Department of Gynecology, Qingdao Cardiovascular Hospital, Qingdao, China
| | - Yuyan Qi
- Department of Gynecology, Qingdao Cardiovascular Hospital, Qingdao, China
| | - Aijie Li
- Department of Obstetrics, Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Jia Li
- Department of Obstetrics, Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Lili Zheng
- Department of Obstetrics, Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
3
|
Wang F, Yang Q, Wang X, Guo Y, Lin S. CircYTHDF1/miR-19b-3p/YTHDF1 axis contributes to pregnancy-induced hypertension development by enhancing vascular endothelial cell injury. Hypertens Pregnancy 2024; 43:2414976. [PMID: 39503530 DOI: 10.1080/10641955.2024.2414976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE The biological role of circ_0004858 (circYTHDF1) in pregnancy-induced hypertension (PIH) and the underlying mechanisms were unknown, and which were explored in this study. METHODS ELISA was employed to detect the level of inflammatory cytokines and biochemical parameters; flow cytometry was employed to detect cell apoptosis; western blot and qRT-PCR were employed to examine expression level. RESULTS The level of IL-1β, TNF-α, IL-6, TGF-β1, ET-1, and Ang-II were significantly elevated in the peripheral blood of PIH patients. The co-culture of HUVEC and CD4+ T cells isolated from the peripheral blood of PIH patients significantly elevated the apoptosis and expression level of NRF2/HO-1 but reduced the protein level of ferroptosis-related markers (GPX4, FSP, and CoQ10B) in HUVEC. Also, the expression of circYTHDF1 and YTHDF1 were markedly up-regulated in HUVEC co-cultured with CD4+ T cells isolated from PIH patients, but miR-19b-3p expression was markedly down-regulated, and the similar results were observed in Ang-II-treated HUVEC. Based on the predicted binding sites, the luciferase reporter assay confirmed the interaction between miR-19b-3p and circYTHDF1 or YTHDF1. The results of qRT-PCR and western blot further demonstrated that circYTHDF1 competitively bound to miR-19b-3p to up-regulate YTHDF1 in HUVEC. Functionally, deleting circYTHDF1markedly reduced ferroptosis and apoptosis in Ang-II-treated HUVEC, but both which were reversed by miR-19b-3p inhibitor, suggesting the involvement of circYTHDF1/miR-19b-3p/YTHDF1 axis in vascular endothelial cell injury in PIH. CONCLUSIONS This study may provide a novel insight into the pathogenesis of PIH as well as a new treatment strategy.
Collapse
Affiliation(s)
- Fangyun Wang
- Department of Obstetrics and Gynecology, Fuqing Maternal and Child Health Hospital, Fuqing, People's Republic of China
| | - Qinping Yang
- Department of Obstetrics and Gynecology, Fuqing Maternal and Child Health Hospital, Fuqing, People's Republic of China
| | - Xiaolan Wang
- Department of Obstetrics and Gynecology, Fuqing Maternal and Child Health Hospital, Fuqing, People's Republic of China
| | - Yuyan Guo
- Physical Examination Center, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Shunhe Lin
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medical for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
4
|
Deng L, Jin Y, Zheng X, Yang Y, Feng Y, Zhou H, Zeng Q. Pharmacological and toxicological characteristics of baicalin in preventing spontaneous abortion and recurrent pregnancy loss: A multi-level critical review. Heliyon 2024; 10:e38633. [PMID: 39640688 PMCID: PMC11619987 DOI: 10.1016/j.heliyon.2024.e38633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Relevance Spontaneous abortion (SAB) and recurrent pregnancy loss (RPL) occur alone or concurrently with increasing incidences recently. Scutellaria baicalensis Georgi (SBG) has been used to prevent pregnancy loss for thousands of years, which is recognized as a "pregnancy-stabilizing herb" in ancient China. Baicalin (BA) and its metabolite baicalein (BE) are the main bioactive flavonoids in the root of SBG. Methods In this study, we focused particularly on the metabolism, toxicology, and pharmacological effects of BA at the maternal-fetal interface based on the biological process prediction by network pharmacology. Focused on the systematic review of BA's regulatory mechanisms of immune homeostasis, cell proliferation and invasion, programmed cell death, inflammatory microenvironment, angiogenesis, oxidative stress and vascular remodeling at the maternal-fetal interface, it was found that BA exerts its biological effects to treat SAB and RPL through multiple perspectives and targets. We also critically elucidated the limitations of using BA from a clinical perspective. Results We explored the bioavailability, targeting and efficacy of BA from a new perspective (optimization of the BA delivery system, organoid studies based on BA, potential effects of BA on uterine flora and bioactive components). Finally, we propose a multimodal stereo sequencing study of biologically active components based on pathological dynamics incorporating single-cell RNA sequencing, spatially resolved transcriptomics, and single-cell multimodal omics to delve deeper into the fetal-preserving mechanism of BA and to promote the application of BA in clinical practice.
Collapse
Affiliation(s)
- Linwen Deng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yue Jin
- Combined Traditional Chinese Medicine and Western Medicine Clinics, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Xiaoyan Zheng
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yi Yang
- Combined Traditional Chinese Medicine and Western Medicine Clinics, Mianyang Central Hospital, Sichuan, China
| | - Yong Feng
- Combined Traditional Chinese Medicine and Western Medicine Clinics, Mianyang Central Hospital, Sichuan, China
| | - Hang Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Qian Zeng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| |
Collapse
|
5
|
Cheng Y, Lin G, Xie Y, Xuan B, He S, Shang Z, Yan M, Lin J, Wei L, Peng J, Shen A. Baicalin ameliorates angiotensin II-induced cardiac hypertrophy and mitogen-activated protein kinase signaling pathway activation: A target-based network pharmacology approach. Eur J Pharmacol 2024; 981:176876. [PMID: 39127302 DOI: 10.1016/j.ejphar.2024.176876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Baicalin, a flavonoid glycoside from Scutellaria baicalensis Georgi., exerts anti-hypertensive effects. The present study aimed to assess the cardioprotective role of baicalin and explore its potential mechanisms. Network pharmacology analysis pointed out a total of 477 potential targets of baicalin were obtained from the PharmMapper and SwissTargetPrediction databases, while 11,280 targets were identified associating with hypertensive heart disease from GeneCards database. Based on the above 382 common targets, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed enrichment in the regulation of cardiac hypertrophy, cardiac contraction, cardiac relaxation, as well as the mitogen-activated protein kinase (MAPK) and other signaling pathways. Moreover, baicalin treatment exhibited the amelioration of increased cardiac index and pathological alterations in angiotensin II (Ang II)-infused C57BL/6 mice. Furthermore, baicalin treatment demonstrated a reduction in cell surface area and a down-regulation of hypertrophy markers (including atrial natriuretic peptide and brain natriuretic peptide) in vivo and in vitro. In addition, baicalin treatment led to a decrease in the expression of phosphorylated c-Jun N-terminal kinase (p-JNK)/JNK, phosphorylated p38 (p-p38)/p38, and phosphorylated extracellular signal-regulated kinase (p-ERK)/ERK in the cardiac tissues of Ang II-infused mice and Ang II-stimulated H9c2 cells. These findings highlight the cardioprotective effects of baicalin, as it alleviates hypertensive cardiac injury, cardiac hypertrophy, and the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Guosheng Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Yi Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Bihan Xuan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Shuyu He
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Zucheng Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Mengchao Yan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Jing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
6
|
Liu J, Li W, Wang J, Bai L, Xu J, Chen X, Wang S, Li L, Xu X. IL-32 regulates trophoblast invasion through miR-205-NFκB-MMP2/9 axis contributing to the pregnancy-induced hypertension†. Biol Reprod 2024; 111:780-799. [PMID: 39101465 DOI: 10.1093/biolre/ioae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Interleukin-32 is a species-specific cytokine that plays an important role in inflammation, cancer, and other diseases; however, its role in reproductive and pregnancy-related diseases remains unknown. This study aimed to investigate the role of interleukin-32 in reproductive and pregnancy-related diseases. Placental tissues from patients with pregnancy-induced hypertension, healthy pregnant women, and trophoblast lines were analysed. Interleukin-32 expression was quantified via polymerase chain reaction and immunohistochemistry, and functional assays were performed after interleukin-32 modulation. Interleukin-32 was identified only in placental mammals, such as Carnivora, Cetartiodactyla, Chiroptera, Dermoptera, Lagomorpha, Perissodactyla, and Primates via bioinformatics. Immunohistochemistry and polymerase chain reaction revealed that interleukin-32 was highly expressed in human placental villi, poorly expressed in decidua and endometrial tissues, and was not detected in mouse tissues. Second, interleukin-32 upregulates miR-205 expression by increasing DROSHA expression, and miR-205 promotes interleukin-32 expression by targeting its promoter region. Interleukin-32 and miR-205 significantly enhanced the invasion ability of HTR8/SVneo cells (a trophoblast cell line) and the tube formation ability of human umbilical vein endothelial cells. Through quantitative reverse transcription polymerase chain reaction and western blotting, the interleukin-32/miR-205 loop increased MMP2 and MMP9 expression in HTR-8/SVneo cells via the nuclear factor kappa B signaling pathway. Finally, using quantitative reverse transcription polymerase chain reaction, interleukin-32 and miR-205 expression levels were significantly lower in the placentas of patients with pregnancy-induced hypertension than in women with normal pregnancies. In conclusion, interleukin-32 regulates trophoblast invasion through the miR-205-nuclear factor kappa B-MMP2/9 pathway, which is involved in pregnancy-induced hypertension.
Collapse
Affiliation(s)
- Jianbing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology(Shanxi Medical University), Ministry of Education, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Wenlong Li
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Jinjuan Wang
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Lina Bai
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Jing Xu
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Xihua Chen
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Da Hui Si Road 12#, Haidian District, Beijing, 100081, China
| | - Shufang Wang
- Department of Forensic Medicine, Xinxiang Medical University, Jinhui Road 191#, Xinxiang, 453003, Henan, China
| | - Li Li
- School of Basic Medical Sciences, Shanxi Medical University, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Cellular Physiology(Shanxi Medical University), Ministry of Education, Xinjian South Road 56#, Taiyuan, 030001, Shanxi, China
| | - Xiangbo Xu
- Reproductive Physiology Laboratory, National Research Institute for Family Planning, Da Hui Si Road 12#, Haidian District, Beijing, 100081, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), Da Hui Si Road 12#, Haidian District, Beijing, 100081, China
| |
Collapse
|
7
|
Adu-Gyamfi EA, Cheeran EA, Salamah J, Enabulele DB, Tahir A, Lee BK. Long non-coding RNAs: a summary of their roles in placenta development and pathology†. Biol Reprod 2024; 110:431-449. [PMID: 38134961 DOI: 10.1093/biolre/ioad179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Long non-coding RNAs are cellular transcripts that have ˃200 nucleotides in length and do not code for proteins. Due to their low expression levels, long non-coding RNAs were previously considered as mere transcriptional noise. However, current evidence indicates that they regulate a myriad of biological processes such as cell proliferation, invasion, and apoptosis. Hence, their expression patterns are crucial indicators of the physiological or pathological states of cells, tissues, and organs. The utilization of long non-coding RNAs as biomarkers and therapeutic targets for the clinical management of several diseases have been suggested. Gradually, long non-coding RNAs are gaining a substantial attention in the field of feto-maternal medicine. After embryo implantation, the interactions between the trophoblast cells from the embryo and the uterus of the mother facilitate placenta development and pregnancy progression. These processes are tightly regulated, and their impairments result in pregnancy pathologies such as miscarriage and preeclampsia. Accumulating evidence implicates long non-coding RNAs in these processes. Herein, we have summarized the roles of several long non-coding RNAs in human placenta development, have proposed some mechanisms by which they participate in physiological and pathological placentation, have revealed some knowledge deficits, and have recommended ideal experimental approaches that will facilitate the clarification of the mechanistic actions of each long non-coding RNA at the feto-maternal interface during healthy and pathological pregnancies.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Elisha Ann Cheeran
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Joudi Salamah
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Divine Blessing Enabulele
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Ayesha Tahir
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| |
Collapse
|
8
|
Jiang X, Zhang M. The roles of long noncoding RNA NEAT1 in cardiovascular diseases. Hypertens Res 2024; 47:735-746. [PMID: 38177287 DOI: 10.1038/s41440-023-01551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
The morbidity of cardiovascular diseases (CVDs) gradually increases worldwide. Long noncoding RNAs (lncRNAs) are a large class of non-(protein)-coding RNAs with lengths beyond 200 nucleotides. Increasing evidence suggests that lncRNA NEAT1 plays important roles in the pathogenesis of CVDs, such as myocardial infarction, heart failure, myocardial ischemia-reperfusion (I/R) injury, atherosclerosis, hypertension, cardiomyopathy, and others. We summarized the current studies of NEAT1 in CVDs, which shed light on the understanding of the molecular mechanisms of CVDs and understanding the therapeutic potential of NEAT1.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Mingjuan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
9
|
Li H, Zhang Q. Research Progress of Flavonoids Regulating Endothelial Function. Pharmaceuticals (Basel) 2023; 16:1201. [PMID: 37765009 PMCID: PMC10534649 DOI: 10.3390/ph16091201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium, as the guardian of vascular homeostasis, is closely related to the occurrence and development of cardiovascular diseases (CVDs). As an early marker of the development of a series of vascular diseases, endothelial dysfunction is often accompanied by oxidative stress and inflammatory response. Natural flavonoids in fruits, vegetables, and Chinese herbal medicines have been shown to induce and regulate endothelial cells and exert anti-inflammatory, anti-oxidative stress, and anti-aging effects in a large number of in vitro models and in vivo experiments so as to achieve the prevention and improvement of cardiovascular disease. Focusing on endothelial mediation, this paper introduces the signaling pathways involved in the improvement of endothelial dysfunction by common dietary and flavonoids in traditional Chinese medicine and describes them based on their metabolism in the human body and their relationship with the intestinal flora. The aim of this paper is to demonstrate the broad pharmacological activity and target development potential of flavonoids as food supplements and drug components in regulating endothelial function and thus in the prevention and treatment of cardiovascular diseases. This paper also introduces the application of some new nanoparticle carriers in order to improve their bioavailability in the human body and play a broader role in vascular protection.
Collapse
Affiliation(s)
| | - Qi Zhang
- The Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| |
Collapse
|
10
|
Yang YX, Li H, Bai L, Yao S, Zhang W, Wang TS, Wan QF. Bioinformatics analysis of ceRNA regulatory network of baicalin in alleviating pathological joint alterations in CIA rats. Eur J Pharmacol 2023; 951:175757. [PMID: 37149276 DOI: 10.1016/j.ejphar.2023.175757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inffammation of synovium, leading to cartilage damage, bone erosion,even joint destruction and deformity. The conventional treatment modalities in RA are associated with side effects, emphasizing the need for alternative therapeutic remedies. Baicalin possesses multiple pharmacological effects and the advantage of low toxicity. This study aimed to reveal the potential gene regulatory mechanisms underlying the alleviating effects of baicalin in joint pathological alterations in Collagen-Induced Arthritis (CIA) rat models. At 28 days after the primary immunization, 60mg/kg/d of baicalin was administered via intraperitoneal injection once daily for 40 days, and the pathological alterations of hind paw joints were examined with X-ray imaging. Subsequently, the synovial tissue of knee joints was isolated, from which total RNA was extracted, and mRNA and miRNA sequencing libraries were established. Finally, High-throughput transcriptome sequencing(RNA-seq) technology was performed, and the lncRNAs/miRNAs/mRNAs competing endogenous RNA(ceRNA) regulatory network was analyzed. The CIA model was successfully established, and baicalin treatment significantly alleviated the destruction of distal joints of CIA rat models (p < 0.01). We found that 3 potential ceRNA regulatory networks of baicalin were established, including lncRNA ENSRNOT00000076420/miR-144-3p/Fosb, lncRNA MSTRG.1448.13/miR-144-3p/Atp2b2 and lncRNA MSTRG.1448.13/miR-144-3p/Shanks. The validation results from synovial tissue of CIA rats were consistent with the RNA-Seq results. Overall, this study revealed potentially important genes and ceRNA regulatory network that mediate the alleviating effects of baicalin on joint pathological alterations in CIA rats.
Collapse
Affiliation(s)
- Yu-Xin Yang
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Hui Li
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Lin Bai
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China; Department of Medicine, Luoyang Polytechnic, Luoyang, Henang, 471000, PR China
| | - Si Yao
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Wei Zhang
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Tian-Song Wang
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Qiao-Feng Wan
- Department of Pathogenic Biology and Immunology, College of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China.
| |
Collapse
|
11
|
Liu X, Xiao X, Han X, Yao L, Lan W. Natural flavonoids alleviate glioblastoma multiforme by regulating long non-coding RNA. Biomed Pharmacother 2023; 161:114477. [PMID: 36931030 DOI: 10.1016/j.biopha.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors in adults. Due to the poor prognosis of patients, the median survival time of GBM is often less than 1 year. Therefore, it is very necessary to find novel treatment options with a good prognosis for the treatment or prevention of GBM. In recent years, flavonoids are frequently used to treat cancer. It is a new attractive molecule that may achieve this promising treatment option. Flavonoids have been proved to have many biological functions, such as antioxidation, prevention of angiogenesis, anti-inflammation, inhibition of cancer cell proliferation, and protection of nerve cells. It has also shown the ability to regulate long non-coding RNA (LncRNA). Studies have confirmed that flavonoids can regulate epigenetic modification, transcription, and change microRNA (miRNA) expression of GBM through lncRNA at the gene level. It also found that flavonoids can induce apoptosis and autophagy of GBM cells by regulating lncRNA. Moreover, it can improve the metabolic abnormalities of GBM, interfere with the tumor microenvironment and related signaling pathways, and inhibit the angiogenesis of GBM cells. Eventually, flavonoids can block the tumor initiation, growth, proliferation, differentiation, invasion, and metastasis. In this review, we highlight the role of lncRNA in GBM cancer progression and the influence of flavonoids on lncRNA regulation. And emphasize their expected role in the prevention and treatment of GBM.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
12
|
Flavonoids exert potential in the management of hypertensive disorders in pregnancy. Pregnancy Hypertens 2022; 29:72-85. [DOI: 10.1016/j.preghy.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
|
13
|
Ge Q, Zhao J, Qu F. Expression of serum long noncoding RNA FAM99A in patients with hypertensive disorder complicating and its clinical significance. Blood Press Monit 2022; 27:233-238. [PMID: 35258024 DOI: 10.1097/mbp.0000000000000591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Hypertensive disorder complicating pregnancy (HDCP) consists of various heterogeneous conditions. Long noncoding RNAs (LncRNA) FAM99A is implicated in HDCP diagnosis. This study discussed the diagnostic efficiency of lncRNA FAM99A in HDCP. METHODS Totally 130 singleton HDCP patients including 50 patients of gestation hypertension (GH), 44 of mild preeclampsia (mPE), and 36 of severe preeclampsia (sPEz) were enrolled, with 70 healthy pregnant women as the control. Serum lncRNA FAM99A expression was detected and its diagnostic efficiency in HDCP was analyzed using the receiver operating characteristic curve. The influencing factors of PE grade were analyzed using the logistic regression model. RESULTS Serum lncRNA FAM99A was downregulated in HDCP patients. The SBP/DBP, 24-h urinary protein, and serum creatinine (SCr), AST and ALT contents were elevated, and platelet count (PLT) was diminished in HDCP patients. Relative to the high-expression group, SBP/DBP, 24-h urinary protein, SCr, AST, and ALT contents were raised, and PLT was lowered in the low-expression group. The area under curve of lncRNA FAM99A for HDCP diagnosis was 0.9514, and the cutoff value was 0.8450, with 83.85% sensitivity and 94.29% specificity. LncRNA FAM99A expression was downregulated in the GH group, then mPE group, and sPEz group the least. L ncRNA FAM99A had diagnostic efficiency for GH and mPE, and mPE and sPEz. DBP, urinary protein, PLT, and lncRNA FAM99A were independent risk factors for PE severity. CONCLUSION LncRNA FAM99A was diminished in HDCP patients and was related to HDCP severity, which might be used as a potential diagnostic marker of HDCP.
Collapse
Affiliation(s)
- Qiuyan Ge
- Department of Obstetrics, Nantong Tongzhou People's Hospital, Nantong, China
| | | | | |
Collapse
|
14
|
Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function. Stem Cell Res Ther 2022; 13:325. [PMID: 35850692 PMCID: PMC9290268 DOI: 10.1186/s13287-022-03013-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background Flap transplantation is commonly used in reconstructive surgery. A prerequisite for skin flap survival is sufficient blood supply. However, such approaches remain unclear. This study aimed to explore the underlying mechanisms of exosomes derived from human umbilical vascular endothelial cells (HUVECs) exposed to oxidative stress on endothelial progenitor cells (EPCs) and their subsequent influence on the survival of skin flaps. Methods HUVECs were treated with various concentrations of H2O2 to establish an oxidative stress model. To investigate the effects of H2O2-HUVEC-Exos and HUVEC-Exos, Cell Counting Kit-8, tube formation, invasion assays, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed in EPCs. Microarray analysis was used to reveal the differentially expressed long non-coding RNAs (lncRNAs) in the H2O2-HUVEC-Exos and HUVEC-Exos. In addition, gene silencing and western blotting were employed to determine the mechanism behind lncRNA nuclear enrichment enriched transcript 1 (Lnc NEAT1) in EPCs. Further, a rat skin flap model was used to determine the role of the exosomes in skin flap survival in vivo. Results HUVECs were stimulated with 100 μmol/L H2O2 for 12 h to establish an oxidative stress model. H2O2-HUVEC-Exos promoted the proliferation, tube formation, and invasion of EPCs and remarkably increased skin flap survival compared to the HUVEC-Exos and control groups. Sequencing of exosome RNAs revealed that the Lnc NEAT1 level was dramatically increased in the H2O2-HUVEC-Exos, leading to activation of the Wnt/β-catenin signaling pathway. Comparatively, knockdown of Lnc NEAT1 in HUVEC-Exos and H2O2-HUVEC-Exos significantly inhibits the angiogenic capacity of EPCs, reduced the survival area of skin flap and downregulated the expression levels of Wnt/β-catenin signaling pathway proteins, whereas Wnt agonist partly reversed the negative effect of NEAT1 downregulation on EPCs through the Wnt/β-catenin signaling pathway. Conclusions Exosomes derived from HUVECs stimulated by oxidative stress significantly promoted the pro-angiogenic ability of EPCs through the Wnt/β-catenin signaling pathway mediated by Lnc NEAT1 and hence enhanced random flap survival in vivo. Therefore, the application of H2O2-HUVEC-Exos may serve as an alternative therapy for improving random skin flap survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03013-9.
Collapse
|
15
|
Chen J, Liu Q, Ding Z, Wang Y, Zhou L, Zheng Y, Wang B, Li G. LncRNA NEAT1 aggravates lipopolysaccharide-induced acute lung injury by regulating the miR-98-5p/TLR4 axis. J Biochem Mol Toxicol 2021; 35:e22927. [PMID: 34687491 DOI: 10.1002/jbt.22927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 01/08/2023]
Abstract
Although long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) was reported to be associated with acute lung injury (ALI), its specific mechanism has not been well studied. Mouse and cell ALI models were constructed by lipopolysaccharide (LPS). Cell viability was evaluated by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide assay. Cell death was evaluated by lactate dehydrogenase release (LDH) detection kit and flow cytometry. The levels of cytokines in lung tissues lysates were detected by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The expression of apoptosis-related markers was detected by Western blot. The relationship between NEAT1, miR-98-5p, and toll-like receptor 4 (TLR4) was determined by bioinformatics prediction, luciferase reporter assay, and RNA immunoprecipitation (RIP) assay. Rescue experiments were performed to determine the role of NEAT1/miR-98-5p/TLR4 in ALI. NEAT1 was significantly upregulated during ALI both in vitro and in vivo. NEAT1 knockdown efficiently attenuated LPS-induced ALI and reduced LPS-induced elevation of cytokines both in vitro and in vivo. NEAT1 negatively regulated miR-98-5p by directly sponging it, and TLR4 was a target of miR-98-5p. MiR-98-5p inhibition or TLR4 overexpression could obviously attenuate the protective effects of NEAT1 knockdown in LPS-treated A549 cells. Our study demonstrated that NEAT1 knockdown alleviated LPS-induced ALI by targeting the miR-98-5p/TLR4 axis.
Collapse
Affiliation(s)
- Jianhui Chen
- Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu, P. R. China.,Tongji University School of Medicine, Shanghai, P. R. China
| | - Qun Liu
- Lianshui County People's Hospital, Huai'an, Jiangsu, P. R. China
| | - Zongli Ding
- Department of Respiratory Medicine, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P. R. China
| | - Yi Wang
- Department of Respiratory Medicine, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P. R. China
| | - Liyang Zhou
- Department of Respiratory Medicine, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P. R. China
| | - Yulong Zheng
- Department of Respiratory Medicine, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P. R. China
| | - Baolan Wang
- Department of Respiratory Medicine, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, P. R. China
| | - Gang Li
- Department of Respiratory Medicine, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, P. R. China
| |
Collapse
|