1
|
Ma Y, Field NR, Xie T, Briscas S, Kokinogoulis EG, Skipper TS, Alghalayini A, Sarker FA, Tran N, Bowden NA, Dickson KA, Marsh DJ. Aberrant SWI/SNF Complex Members Are Predominant in Rare Ovarian Malignancies-Therapeutic Vulnerabilities in Treatment-Resistant Subtypes. Cancers (Basel) 2024; 16:3068. [PMID: 39272926 PMCID: PMC11393890 DOI: 10.3390/cancers16173068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-remodelling complex in human malignancy, with over 20% of tumours having a mutation in a SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations in ARID1A, encoding one of the mutually exclusive DNA-binding subunits of SWI/SNF, occur in 42-67% of ovarian clear cell carcinomas (OCCC). The concomitant somatic or germline mutation and epigenetic silencing of the mutually exclusive ATPase subunits SMARCA4 and SMARCA2, respectively, occurs in Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), with SMARCA4 mutation reported in 69-100% of SCCOHT cases and SMARCA2 silencing seen 86-100% of the time. Somatic ARID1A mutations also occur in endometrioid ovarian cancer (EnOC), as well as in the chronic benign condition endometriosis, possibly as precursors to the development of the endometriosis-associated cancers OCCC and EnOC. Mutation of the ARID1A paralogue ARID1B can also occur in both OCCC and SCCOHT. Mutations in other SWI/SNF complex members, including SMARCA2, SMARCB1 and SMARCC1, occur rarely in either OCCC or SCCOHT. Abrogated SWI/SNF raises opportunities for pharmacological inhibition, including the use of DNA damage repair inhibitors, kinase and epigenetic inhibitors, as well as immune checkpoint blockade.
Collapse
Affiliation(s)
- Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natisha R Field
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sarina Briscas
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Emily G Kokinogoulis
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tali S Skipper
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amani Alghalayini
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Farhana A Sarker
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nikola A Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, Newcastle, NSW 2289, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2289, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Deborah J Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Oliveira DVNP, Schnack TH, Poulsen TS, Christiansen AP, Høgdall CK, Høgdall EV. Genomic Sub-Classification of Ovarian Clear Cell Carcinoma Revealed by Distinct Mutational Signatures. Cancers (Basel) 2021; 13:5242. [PMID: 34680390 PMCID: PMC8533704 DOI: 10.3390/cancers13205242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is characterized by dismal prognosis, partially due to its low sensitivity to standard chemotherapy regimen. It is also well-known for presenting unique molecular features in comparison to other epithelial ovarian cancer subtypes. Here, we aim to identify potential subgroups of patients in order to (1) determine their molecular features and (2) characterize their mutational signature. Furthermore, we sought to perform the investigation based on a potentially clinically relevant setting. To that end, we assessed the mutational profile and genomic instability of 55 patients extracted from the Gynecologic Cancer Database (DGCD) by using a panel comprised of 409 cancer-associated genes and a microsatellite assay, respectively; both are currently used in our routine environment. In accordance with previous findings, ARID1A and PIK3CA were the most prevalent mutations, present in 49.1% and 41.8%, respectively. From those, the co-occurrence of ARID1A and PIK3CA mutations was observed in 36.1% of subjects, indicating that this association might be a common feature of OCCC. The microsatellite instability frequency was low across samples. An unbiased assessment of signatures identified the presence of three subgroups, where "PIK3CA" and "Double hit" (with ARID1A and PIK3CA double mutation) subgroups exhibited unique signatures, whilst "ARID1A" and "Undetermined" (no mutations on ARID1A nor PIK3CA) subgroups showed similar profiles. Those differences were further indicated by COSMIC signatures. Taken together, the current findings suggest that OCCC presents distinct mutational landscapes within its group, which may indicate different therapeutic approaches according to its subgroup. Although encouraging, it is noteworthy that the current results are limited by sample size, and further investigation on a larger group would be crucial to better elucidate them.
Collapse
Affiliation(s)
- Douglas V. N. P. Oliveira
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark; (D.V.N.P.O.); (T.S.P.)
| | - Tine H. Schnack
- Department of Gynecology, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (T.H.S.); (C.K.H.)
- Department of Gynecology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Tim S. Poulsen
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark; (D.V.N.P.O.); (T.S.P.)
| | - Anne P. Christiansen
- Department of Pathology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark;
| | - Claus K. Høgdall
- Department of Gynecology, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (T.H.S.); (C.K.H.)
| | - Estrid V. Høgdall
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark; (D.V.N.P.O.); (T.S.P.)
| |
Collapse
|