1
|
Bin S, Yoo M, Molinari P, Gentile M, Budge K, Cantarelli C, Khan Y, La Manna G, Baldwin WM, Dvorina N, Cravedi P, Gusella GL. Reduced decay-accelerating factor expression promotes complement-mediated cystogenesis in murine ADPKD. JCI Insight 2024; 9:e175220. [PMID: 38912583 PMCID: PMC11383362 DOI: 10.1172/jci.insight.175220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/15/2024] [Indexed: 06/25/2024] Open
Abstract
Patients with autosomal dominant polycystic kidney disease (ADPKD), a genetic disease due to mutations of the PKD1 or PKD2 gene, show signs of complement activation in the urine and cystic fluid, but their pathogenic role in cystogenesis is unclear. We tested the causal relationship between complement activation and cyst growth using a Pkd1KO renal tubular cell line and newly generated conditional Pkd1-/- C3-/- mice. Pkd1-deficient tubular cells have increased expression of complement-related genes (C3, C5, CfB, C3ar, and C5ar1), while the gene and protein expression of complement regulators DAF, CD59, and Crry is decreased. Pkd1-/- C3-/- mice are unable to fully activate the complement cascade and are characterized by a significantly slower kidney cystogenesis, preserved renal function, and reduced intrarenal inflammation compared with Pkd1-/- C3+/+ controls. Transgenic expression of the cytoplasmic C-terminal tail of Pkd1 in Pkd1KO cells lowered C5ar1 expression, restored Daf levels, and reduced cell proliferation. Consistently, both DAF overexpression and pharmacological inhibition of C5aR1 (but not C3aR) reduced Pkd1KO cell proliferation. In conclusion, the loss of Pkd1 promotes unleashed activation of locally produced complement by downregulating DAF expression in renal tubular cells. Increased C5a formation and C5aR1 activation in tubular cells promotes cyst growth, offering a new therapeutic target.
Collapse
Affiliation(s)
- Sofia Bin
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero- University of Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Miran Yoo
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Molinari
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Micaela Gentile
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Unità Operativa Nefrologia, Azienda-Ospedaliero University of Parma, Department of Medicine and Syrgery, University of Parma, Italy
| | - Kelly Budge
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chiara Cantarelli
- Unità Operativa Nefrologia, Azienda-Ospedaliero University of Parma, Department of Medicine and Syrgery, University of Parma, Italy
| | - Yaseen Khan
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gaetano La Manna
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero- University of Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paolo Cravedi
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - G Luca Gusella
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Abstract
The complement cascade comprises soluble and cell surface proteins and is an important arm of the innate immune system. Once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammatory, vasoactive and metabolic responses. Although complement is crucial to host defence and homeostasis, its inappropriate or uncontrolled activation can also drive tissue injury. For example, the complement system has been known for more than 50 years to be activated by glomerular immune complexes and to contribute to autoimmune kidney disease. Notably, the latest research shows that complement is also activated in kidney diseases that are not traditionally thought of as immune-mediated, including haemolytic-uraemic syndrome, diabetic kidney disease and focal segmental glomerulosclerosis. Several complement-targeted drugs have been approved for the treatment of kidney disease, and additional anti-complement agents are being investigated in clinical trials. These drugs are categorically different from other immunosuppressive agents and target pathological processes that are not effectively inhibited by other classes of immunosuppressants. The development of these new drugs might therefore have considerable benefits in the treatment of kidney disease.
Collapse
Affiliation(s)
- Vojtech Petr
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M Thurman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
3
|
Urinary Extracellular Vesicles in Chronic Kidney Disease: From Bench to Bedside? Diagnostics (Basel) 2023; 13:diagnostics13030443. [PMID: 36766548 PMCID: PMC9913975 DOI: 10.3390/diagnostics13030443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Extracellular vesicles are a diverse group of particles that include exosomes, microvesicles, and apoptotic bodies and are defined by size, composition, site of origin, and density. They incorporate various bioactive molecules from their cell of origin during formation, such as soluble proteins, membrane receptors, nucleic acids (mRNAs and miRNAs), and lipids, which can then be transferred to target cells. Extracellular vesicles/exosomes have been extensively studied as a critical factor in pathophysiological processes of human diseases. Urinary extracellular vesicles could be a promising liquid biopsy for determining the pattern and/or severity of kidney histologic injury. The signature of urinary extracellular vesicles may pave the way for noninvasive methods to supplement existing testing methods for diagnosing kidney diseases. We discuss the potential role of urinary extracellular vesicles in various chronic kidney diseases in this review, highlighting open questions and discussing the potential for future research.
Collapse
|
4
|
Zimmerman KA, Hopp K, Mrug M. Role of chemokines, innate and adaptive immunity. Cell Signal 2020; 73:109647. [PMID: 32325183 DOI: 10.1016/j.cellsig.2020.109647] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
Polycystic Kidney Disease (PKD) triggers a robust immune system response including changes in both innate and adaptive immunity. These changes involve immune cells (e.g., macrophages and T cells) as well as cytokines and chemokines (e.g., MCP-1) that regulate the production, differentiation, homing, and various functions of these cells. This review is focused on the role of the immune system and its associated factors in the pathogenesis of PKDs as evidenced by data from cell-based systems, animal models, and PKD patients. It also highlights relevant pre-clinical and clinical studies that point to specific immune system components as promising candidates for the development of prognostic biomarkers and therapeutic strategies to improve PKD outcomes.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension, Polycystic Kidney Disease Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michal Mrug
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Veterans Affairs Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
5
|
Xue C, Mei CL. Polycystic Kidney Disease and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:81-100. [PMID: 31399962 DOI: 10.1007/978-981-13-8871-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder characterized by formations of numerous cysts in kidneys and most caused by PKD1 or PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). The interstitial inflammation and fibrosis is one of the major pathological changes in polycystic kidney tissues with an accumulation of inflammatory cells, chemokines, and cytokines. The immune response is observed across different stages and occurs prior to or coincident with cyst formation in ADPKD. Evidence for inflammation as an important contributor to cyst growth and fibrosis includes increased interstitial macrophages, upregulated expressions of pro-inflammatory cytokines, activated complement system, and activated pathways including NF-κB and JAK-STAT signaling in polycystic kidney tissues. Inflammatory cells are responsible for overproduction of several pro-fibrotic growth factors which promote renal fibrosis in ADPKD. These growth factors trigger epithelial mesenchymal transition and myofibroblast/fibrocyte activation, which stimulate the expansion of extracellular matrix (ECM) including collagen I, III, IV, V, and fibronectin, leading to renal fibrosis and reduced renal function. Besides, there are imbalanced ECM turnover regulators which lead to the increased ECM production and inadequate degradation in polycystic kidney tissues. Several fibrosis associated signaling pathways, such as TGFβ-SMAD, Wnt, and periostin-integrin-linked kinase are also activated in polycystic kidney tissues. Although the effective anti-fibrotic treatments are limited at the present time, slowing the cyst expansion and fibrosis development is very important for prolonging life span and improving the palliative care of ADPKD patients. The inhibition of pro-fibrotic cytokines involved in fibrosis might be a new therapeutic strategy for ADPKD in the future.
Collapse
Affiliation(s)
- Cheng Xue
- Division of Nephrology, Kidney Institute of PLA, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chang-Lin Mei
- Division of Nephrology, Kidney Institute of PLA, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
6
|
Wu M, Gu J, Mei S, Xu D, Jing Y, Yao Q, Chen M, Yang M, Chen S, Yang B, Qi N, Hu H, Wüthrich RP, Mei C. Resveratrol delays polycystic kidney disease progression through attenuation of nuclear factor κB-induced inflammation. Nephrol Dial Transplant 2016; 31:1826-1834. [PMID: 27190325 DOI: 10.1093/ndt/gfw058] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/24/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Inflammation plays an important role in polycystic kidney disease (PKD). The current study aimed to examine the efficacy of the anti-inflammatory compound resveratrol in PKD and to investigate its underlying mechanism of action. METHODS Male Han:SPRD (Cy/+) rats with PKD were treated with 200 mg/kg/day resveratrol or vehicle by gavage for 5 weeks. Human autosomal dominant (AD) PKD cells, three-dimensional (3D) Madin-Darby canine kidney cells and zebrafish were treated with various concentrations of resveratrol or the nuclear factor κB (NF-κB) inhibitor QNZ. RESULTS Resveratrol treatment reduced blood urea nitrogen levels and creatinine levels by 20 and 24%, respectively, and decreased two-kidney/total body weight ratio by 15% and cyst volume density by 24% in Cy/+ rats. The proliferation index and the macrophage infiltration index were reduced by 40 and 43%, respectively, in resveratrol-treated cystic kidneys. Resveratrol reduced the levels of the pro-inflammatory factors monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α) and complement factor B (CFB) in Cy/+ rat kidneys in parallel with the decreased activity of NF-κB (p50/p65). The activation of NF-κB and its correlation with pro-inflammatory factor expression were confirmed in human ADPKD cells and kidney tissues. Resveratrol and QNZ inhibited the expression of MCP-1, TNF-α and CFB and reduced NF-κB activity in ADPKD cells. Moreover, NF-κB blockage minimized the inhibition of inflammatory factor production by resveratrol treatment. Furthermore, resveratrol or QNZ inhibited cyst formation in the 3D cyst and zebrafish models. CONCLUSIONS The NF-κB signaling pathway is activated and partly responsible for inflammation in polycystic kidney tissues. Targeting inflammation through resveratrol could be a new strategy for PKD treatment in the future.
Collapse
Affiliation(s)
- Ming Wu
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junhui Gu
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shuqin Mei
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dechao Xu
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ying Jing
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qing Yao
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meihan Chen
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ming Yang
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Sixiu Chen
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Yang
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Na Qi
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Huimin Hu
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | - Changlin Mei
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
7
|
Salih M, Demmers JA, Bezstarosti K, Leonhard WN, Losekoot M, van Kooten C, Gansevoort RT, Peters DJM, Zietse R, Hoorn EJ. Proteomics of Urinary Vesicles Links Plakins and Complement to Polycystic Kidney Disease. J Am Soc Nephrol 2016; 27:3079-3092. [PMID: 26940098 DOI: 10.1681/asn.2015090994] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/19/2015] [Indexed: 12/21/2022] Open
Abstract
Novel therapies in autosomal dominant polycystic kidney disease (ADPKD) signal the need for markers of disease progression or response to therapy. This study aimed to identify disease-associated proteins in urinary extracellular vesicles (uEVs), which include exosomes, in patients with ADPKD. We performed quantitative proteomics on uEVs from healthy controls and patients with ADPKD using a labeled approach and then used a label-free approach with uEVs of different subjects (healthy controls versus patients with ADPKD versus patients with non-ADPKD CKD). In both experiments, 30 proteins were consistently more abundant (by two-fold or greater) in ADPKD-uEVs than in healthy- and CKD-uEVs. Of these proteins, we selected periplakin, envoplakin, villin-1, and complement C3 and C9 for confirmation because they were also significantly overrepresented in pathway analysis and were previously implicated in ADPKD pathogenesis. Immunoblotting confirmed higher abundances of the selected proteins in uEVs from three independent groups of patients with ADPKD. Whereas uEVs of young patients with ADPKD and preserved kidney function already had higher levels of complement, only uEVs of patients with advanced stages of ADPKD had increased levels of villin-1, periplakin, and envoplakin. Furthermore, all five proteins correlated positively with total kidney volume. Analysis in kidney tissue from mice with kidney-specific, tamoxifen-inducible Pkd1 deletion demonstrated higher expression in more severe stages of the disease and correlation with kidney weight for each protein of interest. In summary, proteomic analysis of uEVs identified plakins and complement as disease-associated proteins in ADPKD. These proteins are new candidates for evaluation as biomarkers or targets for therapy in ADPKD.
Collapse
Affiliation(s)
- Mahdi Salih
- Department of Internal Medicine, Division of Nephrology & Transplantation, and
| | - Jeroen A Demmers
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Cees van Kooten
- Nephrology, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology & Transplantation, and
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology & Transplantation, and
| | | |
Collapse
|