1
|
Kell DB, Pretorius E. The Proteome Content of Blood Clots Observed Under Different Conditions: Successful Role in Predicting Clot Amyloid(ogenicity). Molecules 2025; 30:668. [PMID: 39942772 PMCID: PMC11820299 DOI: 10.3390/molecules30030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
A recent analysis compared the proteome of (i) blood clots seen in two diseases-sepsis and long COVID-when blood was known to have clotted into an amyloid microclot form (as judged by staining with the fluorogenic amyloid stain thioflavin T) with (ii) that of those non-amyloid clots considered to have formed normally. Such fibrinaloid microclots are also relatively resistant to fibrinolysis. The proteins that the amyloid microclots contained differed markedly both from the soluble proteome of typical plasma and that of normal clots, and also between the diseases studied (an acute syndrome in the form of sepsis in an ITU and a chronic disease represented by Long COVID). Many proteins in the amyloid microclots were low in concentration in plasma and were effectively accumulated into the fibres, whereas many other abundant plasma proteins were excluded. The proteins found in the microclots associated with the diseases also tended to be themselves amyloidogenic. We here ask effectively the inverse question. This is: can the clot proteome tell us whether the clots associated with a particular disease contained proteins that are observed uniquely (or are highly over-represented) in known amyloid clots relative to normal clots, and thus were in fact amyloid in nature? The answer is in the affirmative in a variety of major coagulopathies, viz., venous thromboembolism, pulmonary embolism, deep vein thrombosis, various cardiac issues, and ischaemic stroke. Galectin-3-binding protein and thrombospondin-1 seem to be especially widely associated with amyloid-type clots, and the latter has indeed been shown to be incorporated into growing fibrin fibres. These may consequently provide useful biomarkers with a mechanistic basis.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
2
|
Ghosh P, Kundu A, Ganguly D. From experimental studies to computational approaches: recent trends in designing novel therapeutics for amyloidogenesis. J Mater Chem B 2025; 13:858-881. [PMID: 39664012 DOI: 10.1039/d4tb01890g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Amyloidosis is a condition marked by misfolded proteins that build up in tissues and eventually destroy organs. It has been connected to a number of fatal illnesses, including non-neuropathic and neurodegenerative conditions, which in turn have a significant influence on the worldwide health sector. The inability to identify the underlying etiology of amyloidosis has hampered efforts to find a treatment for the condition. Despite the identification of a multitude of putative pathogenic variables that may operate independently or in combination, the molecular mechanisms responsible for the development and progression of the disease remain unclear. A thorough investigation into protein aggregation and the impacts of toxic aggregated species will help to clarify the cytotoxicity of aggregation-mediated cellular apoptosis and lay the groundwork for future studies aimed at creating effective treatments and medications. This review article provides a thorough summary of the combination of various experimental and computational approaches to modulate amyloid aggregation. Further, an overview of the latest developments of novel therapeutic agents is given, along with a discussion of the possible obstacles and viewpoints on this developing field. We believe that the information provided by this review will help scientists create innovative treatment strategies that affect the way proteins aggregate.
Collapse
Affiliation(s)
- Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| | - Agnibin Kundu
- Department of Medicine, District Hospital Howrah, 10, Biplabi Haren Ghosh Sarani Lane, Howrah 711101, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science & Technology, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| |
Collapse
|
3
|
Szablewski L. Associations Between Diabetes Mellitus and Neurodegenerative Diseases. Int J Mol Sci 2025; 26:542. [PMID: 39859258 PMCID: PMC11765393 DOI: 10.3390/ijms26020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Different mechanisms of associations between these diseases and diabetes mellitus have been suggested. For example, it is postulated that an impaired intracellular insulin signaling pathway, together with hyperglycemia and hyperinsulinemia, may cause pathological changes, such as dysfunction of the mitochondria, oxidative stress inflammatory responses, etc. The association between diabetes mellitus and neurodegenerative diseases, as well as the mechanisms of these associations, needs further investigation. The aim of this review is to describe the associations between diabetes mellitus, especially type 1 (T1DM) and type 2 diabetes mellitus, and selected neurodegenerative diseases, i.e., Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Suggested mechanisms of these associations are also described.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
4
|
Shi L, Huanood G, Miura S, Kuragano M, Tokuraku K. Real-Time 3D Imaging and Inhibition Analysis of Human Serum Amyloid A Aggregations Using Quantum Dots. Int J Mol Sci 2024; 25:11128. [PMID: 39456910 PMCID: PMC11508868 DOI: 10.3390/ijms252011128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Serum amyloid A (SAA) is one of the most important precursor amyloid proteins discovered during the study of amyloidosis, but its underlying aggregation mechanism has not yet been well elucidated. Since SAA aggregation is a key step in the pathogenesis of AA amyloidosis, amyloid inhibitors can be used as a tool to study its pathogenesis. Previously, we reported a novel microliter-scale high-throughput screening (MSHTS) system for screening amyloid β (Aβ) aggregation inhibitors based on quantum dot (QD) fluorescence imaging technology. In this study, we report the aggregation of human SAA (hSAA) in phosphate-buffered saline, in which we successfully visualized hSAA aggregation by QD using fluorescence microscopy and confocal microscopy. Two-dimensional and three-dimensional image analyses showed that most aggregations were observed at 40 μM hSAA, which was the optimal aggregation concentration in vitro. The accuracy of this finding was verified by a Thioflavin T assay. The transmission electron microscopy results showed that QD uniformly bound to hSAA aggregation. hSAA aggregation inhibitory activity was also evaluated by rosmarinic acid (RA). The results showed that RA, which is a compound with high inhibitory activity against Aβ aggregation, also exhibited high inhibitory activity against 40 μM hSAA. These results indicate that the MSHTS system is an effective tool for visualizing hSAA aggregation and for screening highly active inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Kiyotaka Tokuraku
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (L.S.); (G.H.); (S.M.); (M.K.)
| |
Collapse
|
5
|
Saremi S, Khajeh K. Amyloid fibril cytotoxicity and associated disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:265-290. [PMID: 38811083 DOI: 10.1016/bs.pmbts.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Misfolded proteins assemble into fibril structures that are called amyloids. Unlike usually folded proteins, misfolded fibrils are insoluble and deposit extracellularly or intracellularly. Misfolded proteins interrupt the function and structure of cells and cause amyloid disease. There is increasing evidence that the most pernicious species are oligomers. Misfolded proteins disrupt cell function and cause cytotoxicity by calcium imbalance, mitochondrial dysfunction, and intracellular reactive oxygen species. Despite profound impacts on health, social, and economic factors, amyloid diseases remain untreatable. To develop new therapeutics and to understand the pathological manifestations of amyloidosis, research into the origin and pathology of amyloidosis is urgently needed. This chapter describes the basic concept of amyloid disease and the function of atypical amyloid deposits in them.
Collapse
Affiliation(s)
- Sabereh Saremi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Zhao Y, Li Q, Huang Q, Liu Y. Self-Destructive Nanoscavengers Capture and Clear Neurotoxic Soluble β-Amyloid Aggregates. Macromol Rapid Commun 2023; 44:e2300378. [PMID: 37534564 DOI: 10.1002/marc.202300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Cerebral soluble β-amyloid aggregates (sAβs) accumulation is one of the most important causes in Alzheimer's disease (AD) progression. In order to mitigate the neurotoxicity induced by sAβs and achieve enhanced AD therapeutic outcomes, robust sAβs clearance become an emerging task. Herein, a self-destructive nanoscavenger (SDNS) is reported based on multifunctional peptide-polymer complexes that can capture extracellular sAβs via hydrogen-bonding interactions and deliver them into microglial lysosomes. The internalized SDNS then occurs self-destruction within lysosomes and upregulates autophagy, thereby promoting the degradation of neurotoxic sAβs. Importantly, the enhanced autophagy also significantly suppresses the secretion of inflammatory factors by microglia, which is induced by internalized sAβs. Given that cerebral persistent inflammatory environment disturbs microglia-mediated phagocytosis and degradation, it is believed that this synergistic approach has valuable potential as a therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qingqing Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Shrimali PC, Chen S, Das A, Dreher R, Howard MK, Ryan JJ, Buck J, Kim D, Sprunger ML, Rudra JS, Jackrel ME. Amyloidogenic propensity of self-assembling peptides and their adjuvant potential for use as DNA vaccines. Acta Biomater 2023; 169:464-476. [PMID: 37586449 DOI: 10.1016/j.actbio.2023.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
De novo designed peptides that self-assemble into cross-β rich fibrillar biomaterials have been pursued as an innovative platform for the development of adjuvant- and inflammation-free vaccines. However, they share structural and morphological properties similar to amyloid species implicated in neurodegenerative diseases, which has been a long-standing concern for their successful translation. Here, we comprehensively characterize the amyloidogenic character of the amphipathic self-assembling cross-β peptide KFE8, compared to pathological amyloid and amyloid-like proteins α-synuclein (α-syn) and TDP-43. Further, we developed plasmid-based DNA vaccines with the KFE8 backbone serving as a scaffold for delivery of a GFP model antigen. We find that expression of tandem repeats of KFE8 is non-toxic and efficiently cleared by autophagy. We also demonstrate that preformed KFE8 fibrils do not cross-seed amyloid formation of α-syn in mammalian cells compared to α-syn preformed fibrils. In mice, vaccination with plasmids encoding the KFE32-GFP fusion protein elicited robust immune responses, inducing production of significantly higher levels of anti-GFP antibodies compared to soluble GFP. Antigen-specific CD8+T cells were also detected in the spleens of vaccinated mice and cytokine profiles from antigen recall assays indicate a balanced Th1/Th2 response. These findings illustrate that cross-β-rich peptide nanofibers have distinct physicochemical properties from those of pathological amyloidogenic proteins, and are an attractive platform for the development of DNA vaccines with self-adjuvanting properties and improved safety profiles. STATEMENT OF SIGNIFICANCE: Biomaterials comprised of self-assembling peptides hold great promise for the development of new vaccines that do not require use of adjuvants. However, these materials have safety concerns, as they self-assemble into cross-β rich fibrils that are structurally similar to amyloid species implicated in disease. Here, we comprehensively study the properties of these biomaterials. We demonstrate that they have distinct properties from pathological proteins. They are non-toxic and do not trigger amyloidogenesis. Vaccination of these materials in mice elicited a robust immune response. Most excitingly, our work suggests that this platform could be used to develop DNA-based vaccines, which have few storage requirements. Further, due to their genetic encoding, longer sequences can be generated and the vaccines will be amenable to modification.
Collapse
Affiliation(s)
- Paresh C Shrimali
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Sheng Chen
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Anirban Das
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Rachel Dreher
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Matthew K Howard
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy J Ryan
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jeremy Buck
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Darren Kim
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Macy L Sprunger
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
8
|
Pal I, Dey SG. The Role of Heme and Copper in Alzheimer's Disease and Type 2 Diabetes Mellitus. JACS AU 2023; 3:657-681. [PMID: 37006768 PMCID: PMC10052274 DOI: 10.1021/jacsau.2c00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/19/2023]
Abstract
Beyond the well-explored proposition of protein aggregation or amyloidosis as the central event in amyloidogenic diseases like Alzheimer's Disease (AD), and Type 2 Diabetes Mellitus (T2Dm); there are alternative hypotheses, now becoming increasingly evident, which suggest that the small biomolecules like redox noninnocent metals (Fe, Cu, Zn, etc.) and cofactors (Heme) have a definite influence in the onset and extent of such degenerative maladies. Dyshomeostasis of these components remains as one of the common features in both AD and T2Dm etiology. Recent advances in this course reveal that the metal/cofactor-peptide interactions and covalent binding can alarmingly enhance and modify the toxic reactivities, oxidize vital biomolecules, significantly contribute to the oxidative stress leading to cell apoptosis, and may precede the amyloid fibrils formation by altering their native folds. This perspective highlights this aspect of amyloidogenic pathology which revolves around the impact of the metals and cofactors in the pathogenic courses of AD and T2Dm including the active site environments, altered reactivities, and the probable mechanisms involving some highly reactive intermediates as well. It also discusses some in vitro metal chelation or heme sequestration strategies which might serve as a possible remedy. These findings might open up a new paradigm in our conventional understanding of amyloidogenic diseases. Moreover, the interaction of the active sites with small molecules elucidates potential biochemical reactivities that can inspire designing of drug candidates for such pathologies.
Collapse
Affiliation(s)
- Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
9
|
Cross interactions between Apolipoprotein E and amyloid proteins in neurodegenerative diseases. Comput Struct Biotechnol J 2023; 21:1189-1204. [PMID: 36817952 PMCID: PMC9932299 DOI: 10.1016/j.csbj.2023.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Three common Apolipoprotein E isoforms, ApoE2, ApoE3, and ApoE4, are key regulators of lipid homeostasis, among other functions. Apolipoprotein E can interact with amyloid proteins. The isoforms differ by one or two residues at positions 112 and 158, and possess distinct structural conformations and functions, leading to isoform-specific roles in amyloid-based neurodegenerative diseases. Over 30 different amyloid proteins have been found to share similar characteristics of structure and toxicity, suggesting a common interactome. The molecular and genetic interactions of ApoE with amyloid proteins have been extensively studied in neurodegenerative diseases, but have not yet been well connected and clarified. Here we summarize essential features of the interactions between ApoE and different amyloid proteins, identify gaps in the understanding of the interactome and propose the general interaction mechanism between ApoE isoforms and amyloid proteins. Perhaps more importantly, this review outlines what we can learn from the interactome of ApoE and amyloid proteins; that is the need to see both ApoE and amyloid proteins as a basis to understand neurodegenerative diseases.
Collapse
|
10
|
Dec R, Okoń R, Puławski W, Wacławska M, Dzwolak W. Forced amyloidogenic cooperativity of structurally incompatible peptide segments: Fibrillization behavior of highly aggregation-prone A-chain fragment of insulin coupled to all-L, and alternating L/D octaglutamates. Int J Biol Macromol 2022; 223:362-369. [PMID: 36368353 DOI: 10.1016/j.ijbiomac.2022.11.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
Abstract
Aggregation of proteins into amyloid fibrils is driven by interactions between relatively small amyloidogenic segments. The interplay between aggregation-prone and aggregation-resistant fragments within a single polypeptide chain remains obscure. Here, we examine fibrillization behavior of two chimeric peptides, ACC1-13E8 and ACC1-13E8(L/D), in which the highly amyloidogenic fragment of insulin (ACC1-13) is extended by an octaglutamate segment composed of all-L (E8), or alternating L/D residues (E8(L/D)). As separate entities, ACC1-13 readily forms fibrils with the infrared features of parallel β-sheet while E8 forms antiparallel β-sheets with the distinct infrared characteristics. This contrasts with the profoundly aggregation-resistant E8(L/D), although L/D patterns have been hypothesized as compatible with aggregated α-sheets. ACC1-13E8 and ACC1-13E8(L/D) are found to be equally prone to fibrillization at low pH, or in the presence of Ca2+ ions. Fibrillar states of both ACC1-13E8 and ACC1-13E8(L/D) reveal the infrared features of highly ordered parallel β-sheet without evidence of β2-aggregates (ACC1-13E8) or α-sheets (ACC1-13E8(L/D)). Hence, the preferred structural pattern of ACC1-13 overrides the tendency of E8 to form antiparallel β-sheets and enforces the fibrillar order in E8(L/D). We demonstrate how the powerful amyloid stretch determines the overall amyloid structure forcing non-amyloidogenic fragments to participate in its native amyloid pattern.
Collapse
Affiliation(s)
- Robert Dec
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| | - Róża Okoń
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| | - Wojciech Puławski
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego Street 5, 02-106 Warsaw, Poland
| | - Matylda Wacławska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland; Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska Street 29/37, 01-142 Warsaw, Poland.
| |
Collapse
|
11
|
Langkilde AE, Vestergaard B. Protein fibrillation from another small angle-SAXS data analysis of developing systems. Methods Enzymol 2022; 678:377-409. [PMID: 36641215 DOI: 10.1016/bs.mie.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the fibrillation process amyloid proteins undergo structural changes at very different length and time scales. Small angle X-ray scattering (SAXS) is a method that is uniquely suitable for the structural analysis of this process. Careful measures must, however, be taken both in the sample preparation, data collection and data analysis procedures to ensure proper data quality, coverage of the process and reliable interpretation. With this chapter, we provide many details about the data analysis of such developing systems. The recommendations are based on our own experience with analysis of data from several amyloid and amyloid-like proteins, with data decomposition being a central point in the procedure. We focus on two alternative approaches, one being a laborious, hands-on, iterative approach, the other being more automated, applying a chemometrics based software, developed for the purpose. Both methods can equally well be applied to other developing mixtures, but specific recommendations for amyloid samples are emphasized in this chapter.
Collapse
Affiliation(s)
- Annette Eva Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Jalan S, Anjankar A, Deshpande S. Effective Treatment of Diabetes Mellitus by Resonance Medicine. Cureus 2022; 14:e29535. [PMID: 36312660 PMCID: PMC9595267 DOI: 10.7759/cureus.29535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/24/2022] [Indexed: 12/04/2022] Open
Abstract
The metabolic disorder known as diabetes mellitus (DM) has several different causes, distinguished by recurring hyperglycemia due to inadequate insulin secretion, insulin action, or both. T-lymphocytes target such cells for destruction, which include beta cells. Transplants of the pancreas, islets of Langerhans, and individual beta cells are all effective treatments for DM. Additionally, treating DM using stem cells is popular currently. The basis of stem cell therapy for DM is the replacement of beta cells, or dead pancreatic cells, with stem cells. After attaching to the tissues of the pancreas, the stem cells differentiate into active cells. An X-ray scanner is used to place a catheter into the pancreatic artery in DM, and the process lasts 90 minutes. The use of stem cells to replace dead pancreatic beta cells forms the cornerstone of stem cell treatment for DM. Transplants of the pancreas, islets of Langerhans, and individual beta cells are all effective treatments for insulin-dependent DM. In contrast to prior studies, where we only used low potencies of nosodes and organopreparations, our research used both high and low potencies of these substances. Choosing the strength of the nosode stomach cancer in the computer-connected device selector so that it will resonate with the nosode that is tested in the patient's device is the doctor's responsibility when using the bioresonance therapy method. The initial nosode, which is in the computer programme of the device for bioresonance therapy, is no longer tested when the stomach cancer nosode is tested in a patient along with the chosen potency of this nosode. The initial nosode in the bioresonance therapy device itself is still being studied in case the chosen nosode's potency is inadequate (the frequency of oscillations of the nosode is lower than the frequency of oscillations of the tumour).
Collapse
Affiliation(s)
- Shyam Jalan
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Shubham Deshpande
- Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
13
|
Molecular Dynamics Simulations of Protein Aggregation: Protocols for Simulation Setup and Analysis with Markov State Models and Transition Networks. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2340:235-279. [PMID: 35167078 DOI: 10.1007/978-1-0716-1546-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Protein disorder and aggregation play significant roles in the pathogenesis of numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The end products of the aggregation process in these diseases are highly structured amyloid fibrils. Though in most cases, small, soluble oligomers formed during amyloid aggregation are the toxic species. A full understanding of the physicochemical forces that drive protein aggregation is thus required if one aims for the rational design of drugs targeting the formation of amyloid oligomers. Among a multitude of biophysical and biochemical techniques that are employed for studying protein aggregation, molecular dynamics (MD) simulations at the atomic level provide the highest temporal and spatial resolution of this process, capturing key steps during the formation of amyloid oligomers. Here we provide a step-by-step guide for setting up, running, and analyzing MD simulations of aggregating peptides using GROMACS. For the analysis, we provide the scripts that were developed in our lab, which allow to determine the oligomer size and inter-peptide contacts that drive the aggregation process. Moreover, we explain and provide the tools to derive Markov state models and transition networks from MD data of peptide aggregation.
Collapse
|
14
|
Vestergaard B, Langkilde AE. Protein fibrillation from another small angle: Sample preparation and SAXS data collection. Methods Enzymol 2022; 677:291-321. [DOI: 10.1016/bs.mie.2022.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Shi H, Huang X, Chen X, Yang Y, Wu F, Yao C, Ma G, Du A. Haemonchus contortus Transthyretin-Like Protein TTR-31 Plays Roles in Post-Embryonic Larval Development and Potentially Apoptosis of Germ Cells. Front Cell Dev Biol 2021; 9:753667. [PMID: 34805162 PMCID: PMC8595280 DOI: 10.3389/fcell.2021.753667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 01/25/2023] Open
Abstract
Transthyretin (TTR)-like proteins play multi-function roles in nematode and are important component of excretory/secretory product in Haemonchus contortus. In this study, we functionally characterised a secretory transthyretin-like protein in the barber's pole worm H. contortus. A full-length of transthyretin-like protein-coding gene (Hc-ttr-31) was identified in this parasitic nematode, representing a counterpart of Ce-ttr-31 in Caenorhabditis elegans. High transcriptional levels of Hc-ttr-31 were detected in the egg and early larval stages of H. contortus, with the lowest level measured in the adult stage, indicating a decreased transcriptional pattern of this gene during nematode development. Localisation analysis indicated a secretion of TTR-31 from the intestine to the gonad, suggesting additional roles of Hc-ttr-31 in nematode reproduction. Expression of Hc-ttr-31 and Ce-ttr-31 in C. elegans did not show marked influence on the nematode development and reproduction, whereas Hc-ttr-31 RNA interference-mediated gene knockdown of Ce-ttr-31 shortened the lifespan, decreased the brood size, slowed the pumping rate and inhibited the growth of treated worms. Particularly, gene knockdown of Hc-ttr-31 in C. elegans was linked to activated apoptosis signalling pathway, increased general reactive oxygen species (ROS) level, apoptotic germ cells and facultative vivipary phenotype, as well as suppressed germ cell removal signalling pathways. Taken together, Hc-ttr-31 appears to play roles in regulating post-embryonic larval development, and potentially in protecting gonad from oxidative stress and mediating engulfment of apoptotic germ cells. A better knowledge of these aspects should contribute to a better understanding of the developmental biology of H. contortus and a discovery of potential targets against this and related parasitic worms.
Collapse
Affiliation(s)
- Hengzhi Shi
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xiaocui Huang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Król S, Österlund N, Vosough F, Jarvet J, Wärmländer S, Barth A, Ilag LL, Magzoub M, Gräslund A, Mörman C. The amyloid-inhibiting NCAM-PrP peptide targets Aβ peptide aggregation in membrane-mimetic environments. iScience 2021; 24:102852. [PMID: 34381976 PMCID: PMC8340127 DOI: 10.1016/j.isci.2021.102852] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 01/16/2023] Open
Abstract
Substantial research efforts have gone into elucidating the role of protein misfolding and self-assembly in the onset and progression of Alzheimer's disease (AD). Aggregation of the Amyloid-β (Aβ) peptide into insoluble fibrils is closely associated with AD. Here, we use biophysical techniques to study a peptide-based approach to target Aβ amyloid aggregation. A peptide construct, NCAM-PrP, consists of a largely hydrophobic signal sequence linked to a positively charged hexapeptide. The NCAM-PrP peptide inhibits Aβ amyloid formation by forming aggregates which are unavailable for further amyloid aggregation. In a membrane-mimetic environment, Aβ and NCAM-PrP form specific heterooligomeric complexes, which are of lower aggregation states compared to Aβ homooligomers. The Aβ:NCAM-PrP interaction appears to take place on different aggregation states depending on the absence or presence of a membrane-mimicking environment. These insights can be useful for the development of potential future therapeutic strategies targeting Aβ at several aggregation states.
Collapse
Affiliation(s)
- Sylwia Król
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Sebastian Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Leopold L. Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 106 91, Sweden
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Box 129188, Abu Dhabi, United Arab Emirates
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| | - Cecilia Mörman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
17
|
Schettini AV, Llado L, Heimbach JK, Costello JG, Tranäng M, Van Caenegem O, Daly RC, Van den Bergh P, Casanovas C, Fabregat J, Poterucha JJ, Foguenne M, Ericzon BG, Lerut J. Symptomatic Val122del mutated hereditary transthyretin amyloidosis: Need for early diagnosis and prioritization for heart and liver transplantation. Hepatobiliary Pancreat Dis Int 2021; 20:323-329. [PMID: 34116942 DOI: 10.1016/j.hbpd.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hereditary transthyretin (ATTRv) amyloidosis is an autosomal dominant disease linked to transthyretin gene mutations which cause instability of the transthyretin tetramer. After dissociation and misfolding they reassemble as insoluble fibrils (i.e. amyloid). Apart from the common Val30Met mutation there is a very heterogeneous group of non-Val30Met mutations. In some cases, the clinical picture is dominated by a rapidly evolving restrictive and hypertrophic cardiomyopathy. METHODS A case series of four liver recipients with the highly clinically relevant, rare and particularly aggressive Val122del mutation is presented. Medical and surgical therapeutic options, waiting list policy for ATTRv-amyloidosis, including the need for heart transplantation, and status of heart-liver transplantation are discussed. RESULTS Three patients needed a staged (1 patient) or simultaneous (2 patients) heart-liver transplant due to rapidly progressing cardiac failure and/or neurologic disability. Domino liver transplantation was impossible in two due to fibrotic hepatic transformation caused by cardiomyopathy. After a follow-up ranging from 3.5 to 9.5 years, cardiac (allograft) function was maintained in all patients, but neuropathy progressed in three patients, one of whom died after 80 months. CONCLUSIONS This is the first report in (liver) transplant literature about the rare Val122del ATTRv mutation. Due to its aggressiveness, symptomatic patients should be prioritized on the liver and, in cases with cardiomyopathy, heart waiting lists in order to avoid the irreversible neurological and cardiac damage that leads to a rapid lethal outcome.
Collapse
Affiliation(s)
- Adriano-Valerio Schettini
- Institute for Experimental and Clinical Research (IREC), Catholic University of Louvain (UCL), Avenue Hippocrate 55, Brussels 1200, Belgium
| | - Laura Llado
- Liver Transplant Unit, Department of Surgery, Hospital Universitari de Bellvitge, Calle de la Feixa Llarga, Barcelona 08907, Spain
| | - Julie K Heimbach
- Division of Transplantation Surgery, William J. von Liebig Transplant Center, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Jose Gonzalez Costello
- Advanced Heart Failure and Transplant Unit, Cardiology Department, Hospital Universitari de Bellvitge, Calle de la Feixa Llarga, Barcelona 08907, Spain
| | - Marie Tranäng
- Familial Amyloidotic Polyneuropathy World Transplant Registry (FAPWTR), Division of Transplantation Surgery, Karolinska Universitetssjukhuset Huddinge, F82, Karolinska Institutet, Stockholm 141 86, Sweden
| | - Olivier Van Caenegem
- Cardiothoracic Intensive Care Unit, Department of Cardiovascular Diseases, University Hospitals Saint-Luc - UCL, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Richard C Daly
- Cardiovascular Surgery Department, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Peter Van den Bergh
- Neuromuscular Reference Centre, University Hospital Saint-Luc - UCL, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Carlos Casanovas
- Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, Calle de la Feixa Llarga, Barcelona 08907, Spain
| | - Joan Fabregat
- Liver Transplant Unit, Department of Surgery, Hospital Universitari de Bellvitge, Calle de la Feixa Llarga, Barcelona 08907, Spain
| | - John J Poterucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st St SW, Rochester MN 08907, USA
| | - Maxime Foguenne
- Institute for Experimental and Clinical Research (IREC), Catholic University of Louvain (UCL), Avenue Hippocrate 55, Brussels 1200, Belgium
| | - Bo Göran Ericzon
- Division of Transplantation Surgery, CLINTEC, Karolinska Universitetssjukhuset Huddinge, F82, Karolinska Institutet, Stockholm 14186, Sweden
| | - Jan Lerut
- Institute for Experimental and Clinical Research (IREC), Catholic University of Louvain (UCL), Avenue Hippocrate 55, Brussels 1200, Belgium.
| |
Collapse
|
18
|
Esperante SA, Varejāo N, Pinheiro F, Sant'Anna R, Luque-Ortega JR, Alfonso C, Sora V, Papaleo E, Rivas G, Reverter D, Ventura S. Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation. J Biol Chem 2021; 297:101039. [PMID: 34343569 PMCID: PMC8406001 DOI: 10.1016/j.jbc.2021.101039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the extracellular deposition of the transport protein transthyretin (TTR) as amyloid fibrils. Despite the progress achieved in recent years, understanding why different TTR residue substitutions lead to different clinical manifestations remains elusive. Here, we studied the molecular basis of disease-causing missense mutations affecting residues R34 and K35. R34G and K35T variants cause vitreous amyloidosis, whereas R34T and K35N mutations result in amyloid polyneuropathy and restrictive cardiomyopathy. All variants are more sensitive to pH-induced dissociation and amyloid formation than the wild-type (WT)-TTR counterpart, specifically in the variants deposited in the eyes amyloid formation occurs close to physiological pHs. Chemical denaturation experiments indicate that all the mutants are less stable than WT-TTR, with the vitreous amyloidosis variants, R34G and K35T, being highly destabilized. Sequence-induced stabilization of the dimer–dimer interface with T119M rendered tetramers containing R34G or K35T mutations resistant to pH-induced aggregation. Because R34 and K35 are among the residues more distant to the TTR interface, their impact in this region is therefore theorized to occur at long range. The crystal structures of double mutants, R34G/T119M and K35T/T119M, together with molecular dynamics simulations indicate that their strong destabilizing effect is initiated locally at the BC loop, increasing its flexibility in a mutation-dependent manner. Overall, the present findings help us to understand the sequence-dynamic-structural mechanistic details of TTR amyloid aggregation triggered by R34 and K35 variants and to link the degree of mutation-induced conformational flexibility to protein aggregation propensity.
Collapse
Affiliation(s)
- Sebastián A Esperante
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Nathalia Varejāo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ricardo Sant'Anna
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Carlos Alfonso
- Systems Biochemistry of Bacterial Division Laboratory, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Valentina Sora
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark; Cancer Systems Biology, Health and Technology Department, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark; Cancer Systems Biology, Health and Technology Department, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Germán Rivas
- Systems Biochemistry of Bacterial Division Laboratory, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
19
|
Schmuck B, Chen G, Pelcman J, Kronqvist N, Rising A, Johansson J. Expression of the human molecular chaperone domain Bri2 BRICHOS on a gram per liter scale with an E. coli fed-batch culture. Microb Cell Fact 2021; 20:150. [PMID: 34330289 PMCID: PMC8325310 DOI: 10.1186/s12934-021-01638-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
Background The human Bri2 BRICHOS domain inhibits amyloid formation and toxicity and could be used as a therapeutic agent against amyloid diseases. For translation into clinical use, large quantities of correctly folded recombinant human (rh) Bri2 BRICHOS are required. To increase the expression and solubility levels of rh Bri2 BRICHOS it was fused to NT*, a solubility tag derived from the N-terminal domain of a spider silk protein, which significantly increases expression levels and solubility of target proteins. To increase the expression levels even further and reach the g/L range, which is a prerequisite for an economical production on an industrial scale, we developed a fed-batch expression protocol for Escherichia coli. Results A fed-batch production method for NT*-Bri2 BRICHOS was set up and systematically optimized. This gradual improvement resulted in expression levels of up to 18.8 g/L. Following expression, NT*-Bri2 BRICHOS was purified by chromatographic methods to a final yield of up to 6.5 g/L. After removal of the NT*-tag and separation into different oligomeric species, activity assays verified that different assembly states of the fed-batch produced rh Bri2 BRICHOS have the same ability to inhibit fibrillar and non-fibrillar protein aggregation as the reference protein isolated from shake flask cultures. Conclusions The protocol developed in this work allows the production of large quantities of rh Bri2 BRICHOS using the solubility enhancing NT*-tag as a fusion partner, which is required to effectively conduct pre-clinical research. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01638-8.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 86, Huddinge, Sweden. .,Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 86, Huddinge, Sweden
| | - Josef Pelcman
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 86, Huddinge, Sweden
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 86, Huddinge, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 86, Huddinge, Sweden.,Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 86, Huddinge, Sweden
| |
Collapse
|
20
|
Methods to study the structure of misfolded protein states in systemic amyloidosis. Biochem Soc Trans 2021; 49:977-985. [PMID: 33929491 DOI: 10.1042/bst20201022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022]
Abstract
Systemic amyloidosis is defined as a protein misfolding disease in which the amyloid is not necessarily deposited within the same organ that produces the fibril precursor protein. There are different types of systemic amyloidosis, depending on the protein constructing the fibrils. This review will focus on recent advances made in the understanding of the structural basis of three major forms of systemic amyloidosis: systemic AA, AL and ATTR amyloidosis. The three diseases arise from the misfolding of serum amyloid A protein, immunoglobulin light chains or transthyretin. The presented advances in understanding were enabled by recent progress in the methodology available to study amyloid structures and protein misfolding, in particular concerning cryo-electron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy. An important observation made with these techniques is that the structures of previously described in vitro formed amyloid fibrils did not correlate with the structures of amyloid fibrils extracted from diseased tissue, and that in vitro fibrils were typically more protease sensitive. It is thus possible that ex vivo fibrils were selected in vivo by their proteolytic stability.
Collapse
|
21
|
Tonali N, Hericks L, Schröder DC, Kracker O, Krzemieniecki R, Kaffy J, Le Joncour V, Laakkonen P, Marion A, Ongeri S, Dodero VI, Sewald N. Peptidotriazolamers Inhibit Aβ(1-42) Oligomerization and Cross a Blood-Brain-Barrier Model. Chempluschem 2021; 86:840-851. [PMID: 33905181 DOI: 10.1002/cplu.202000814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/07/2021] [Indexed: 12/25/2022]
Abstract
In peptidotriazolamers every second peptide bond is replaced by a 1H-1,2,3-triazole. Such foldamers are expected to bridge the gap in molecular weight between small-molecule drugs and protein-based drugs. Amyloid β (Aβ) aggregates play an important role in Alzheimer's disease. We studied the impact of amide bond replacements by 1,4-disubstituted 1H-1,2,3-triazoles on the inhibitory activity of the aggregation "hot spots" K16 LVFF20 and G39 VVIA42 in Aβ(1-42). We found that peptidotriazolamers act as modulators of the Aβ(1-42) oligomerization. Some peptidotriazolamers are able to interfere with the formation of toxic early Aβ oligomers, depending on the position of the triazoles, which is also supported by computational studies. Preliminary in vitro results demonstrate that a highly active peptidotriazolamer is also able to cross the blood-brain-barrier.
Collapse
Affiliation(s)
- Nicolo Tonali
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany.,BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Loreen Hericks
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - David C Schröder
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Oliver Kracker
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Radosław Krzemieniecki
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Julia Kaffy
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Vadim Le Joncour
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Pirjo Laakkonen
- Research Programs Unit, Translational Cancer Medicine Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Antoine Marion
- Department of Chemistry, Middle East Technical University, 06800, Ankara, Turkey
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Veronica I Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry Bielefeld University, PO Box, 100131, 33501, Bielefeld, Germany
| |
Collapse
|
22
|
Chan L, Yokota T. Development and Clinical Applications of Antisense Oligonucleotide Gapmers. Methods Mol Biol 2021; 2176:21-47. [PMID: 32865780 DOI: 10.1007/978-1-0716-0771-8_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA-like molecules called antisense oligonucleotides have opened new treatment possibilities for genetic diseases by offering a method of regulating gene expression. Antisense oligonucleotides are often used to suppress the expression of mutated genes which may interfere with essential downstream pathways. Since antisense oligonucleotides have been introduced for clinical use, different chemistries have been developed to further improve efficacy, potency, and safety. One such chemistry is a chimeric structure of a central block of deoxyribonucleotides flanked by sequences of modified nucleotides. Referred to as a gapmer, this chemistry produced promising results in the treatment of genetic diseases. Mipomersen and inotersen are examples of recent FDA-approved antisense oligonucleotide gapmers used for the treatment of familial hypercholesterolemia and hereditary transthyretin amyloidosis, respectively. In addition, volanesorsen was conditionally approved in the EU for the treatment of adult patients with familial chylomicronemia syndrome (FCS) in 2019. Many others are being tested in clinical trials or under preclinical development. This chapter will cover the development of mipomersen and inotersen in clinical trials, along with advancement in gapmer treatments for cancer, triglyceride-elevating genetic diseases, Huntington's disease, myotonic dystrophy, and prion diseases.
Collapse
Affiliation(s)
- Leanna Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
23
|
Krishna KV, Saha RN, Dubey SK. Biophysical, Biochemical, and Behavioral Implications of ApoE3 Conjugated Donepezil Nanomedicine in a Aβ 1-42 Induced Alzheimer's Disease Rat Model. ACS Chem Neurosci 2020; 11:4139-4151. [PMID: 33251785 DOI: 10.1021/acschemneuro.0c00430] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder and is the most common type of dementia. Amyloid β (Aβ) plaques play an important role in the pathophysiology of AD. However, the existing therapeutic strategies are not effective for the management of both Aβ-induced neurotoxicity and Aβ fibrils clearance in biological conditions. Herein, we have developed lipoprotein conjugated polymeric nanoparticles that can boost the clearance rate of Aβ fibrils and mitigate Aβ-induced neurotoxicity in AD rat. These nanoparticles were designed by loading donepezil in an amphiphilic polymer with a lipoprotein (ApoE3) integrated over the surface. Polymeric nanoparticles were prepared by a nanoprecipitation method, and ApoE3 was conjugated to the polymer layer by polysorbate 80. In the present study, we intended to examine the protective effect of ApoE3 nanoparticles against Aβ-induced neurotoxicity both in vitro and in vivo to evaluate if these can reduce the Aβ fibril formation and cognitive and behavioral deficits observed in AD induced rats. In the in vitro study, neurotoxicity induced by Aβ1-42 in human neuroblastoma (SH-SY5Y) cells was found to be significantly reduced upon treatment with ApoE3 donepezil nanoparticles. The presence of the ApoE3 significantly modified the morphology of Aβ fibrils and also inhibited the formation Aβ oligomers. Moreover, in the in vivo study, following treatment, AD induced rats were tested on Morris water maze (MWM) and passive avoidance task for their cognitive ability and sacrificed for biochemical estimations. From our observations, ApoE3 donepezil nanoparticles exhibited neuroprotection in the Aβ1-42 induced model by mitigating the pathological features and cognitive impairments. Thus, we anticipate that the nanosized lipoprotein carriers will possibly offer a rational therapeutic strategy in the formulation development of AD.
Collapse
Affiliation(s)
- Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai International Academic City, P.O. Box 345055, Dubai, United Arab Emirates
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, 345055 Pilani, Rajasthan, India
| |
Collapse
|
24
|
Responsive Expression of MafF to β-Amyloid-Induced Oxidative Stress. DISEASE MARKERS 2020; 2020:8861358. [PMID: 33488846 PMCID: PMC7787795 DOI: 10.1155/2020/8861358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
The small musculoaponeurotic fibrosarcoma (sMaf) proteins MafF, MafG, and MafK are basic region leucine zipper- (bZIP-) type transcription factors and display tissue- or stimulus-specific expression patterns. As the oxidative stress reactive proteins, sMafs are implicated in various neurological disorders. In the present study, the expressions of sMafs were investigated across five databases gathering transcriptomic data from 74 Alzheimer's disease (AD) patients and 66 controls in the Gene Expression Omnibus (GEO) database. The expression of MafF was increased in the hippocampus of AD patients, which was negatively correlated with the expression of the glutamate cysteine ligase catalytic subunit (GCLC). Furthermore, MafF was significantly increased in patients with Braak stage V-VI, compared to those with Braak stage III-IV. β-Amyloid (Aβ), a strong inducer of oxidative stress, plays a crucial role in the pathogenesis of AD. The responsive expressions of sMafs to Aβ-induced oxidative stress were studied in the APP/PS1 mouse model of AD, Aβ intrahippocampal injection rats, and several human cell lines from different tissue origins. This study revealed that only the induction of MafF was accompanied with reduction of GCLC and glutathione (GSH). MafF knockdown suppressed the increase of GSH induced by Aβ. Among sMafs, MafF is the most responsive to Aβ-induced oxidative stress and might potentiate the inhibition of antioxidation. These results provide a better understanding of sMaf modulation in AD and highlight MafF as a potential therapeutic target in AD.
Collapse
|
25
|
Taha ZI, Adam Essa ME, Idris Abdelhalim AT, Elamin Elnour MAA, Osman Eltayeb AA, Mohammed Elwakeel SAA, Abdallah Ahmed A. A Male Case of Renal Amyloidosis. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2020; 000:1-5. [DOI: 10.14218/jerp.2020.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Beal DM, Tournus M, Marchante R, Purton TJ, Smith DP, Tuite MF, Doumic M, Xue WF. The Division of Amyloid Fibrils: Systematic Comparison of Fibril Fragmentation Stability by Linking Theory with Experiments. iScience 2020; 23:101512. [PMID: 32920487 PMCID: PMC7492994 DOI: 10.1016/j.isci.2020.101512] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 01/22/2023] Open
Abstract
The division of amyloid protein fibrils is required for the propagation of the amyloid state and is an important contributor to their stability, pathogenicity, and normal function. Here, we combine kinetic nanoscale imaging experiments with analysis of a mathematical model to resolve and compare the division stability of amyloid fibrils. Our theoretical results show that the division of any type of filament results in self-similar length distributions distinct to each fibril type and the conditions applied. By applying these theoretical results to profile the dynamical stability toward breakage for four different amyloid types, we reveal particular differences in the division properties of disease-related amyloid formed from α-synuclein when compared with non-disease associated model amyloid, the former showing lowered intrinsic stability toward breakage and increased likelihood of shedding smaller particles. Our results enable the comparison of protein filaments' intrinsic dynamic stabilities, which are key to unraveling their toxic and infectious potentials.
Collapse
Affiliation(s)
- David M. Beal
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Magali Tournus
- Centrale Marseille, I2M, UMR 7373, CNRS, Aix-Marseille Univ., Marseille 13453, France
| | - Ricardo Marchante
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Tracey J. Purton
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ Canterbury, UK
| | - David P. Smith
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Mick F. Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Marie Doumic
- INRIA Rocquencourt, équipe-projet BANG, Domaine de Voluceau, BP 105, 78153 Rocquencourt, France
- Wolfgang Pauli Institute, University of Vienna, Vienna, Austria
| | - Wei-Feng Xue
- Kent Fungal Group, School of Biosciences, University of Kent, CT2 7NJ Canterbury, UK
- INRIA Rocquencourt, équipe-projet BANG, Domaine de Voluceau, BP 105, 78153 Rocquencourt, France
| |
Collapse
|
27
|
Alshehri SA, Hussein MRA. Primary Localized Amyloidosis of the Intestine: A Pathologist Viewpoint. Gastroenterology Res 2020; 13:129-137. [PMID: 32864023 PMCID: PMC7433369 DOI: 10.14740/gr1303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background Localized amyloidosis of the intestine is a rare entity, which can clinically masquerade several conditions such as colitis, polyps, and malignant tumors. This study aims to evaluate the clinicopathological features of this entity. Methods To evaluate the clinicopathological features of this entity, a comprehensive search of the literature (1960 to 2019) was done using the following keywords: "amyloidosis" and "small intestine" or "duodenum" or "ileum" or "jejunum" or "colon". We identified 756 studies about gastrointestinal amyloidosis. Data were examined for 27 studies about localized intestinal amyloidosis. The clinicopathological features were described. Results The age at presentation ranged from 29 to 88 years. The male to female ratio was 3:1. The jejunum and sigmoid colon were the most commonly involved sites. Abdominal pain and intestinal obstruction (small intestine), or rectal bleeding (sigmoid region) were the most common clinical presentations. Colonoscopic findings included wall thickening, mucosal ulcerations (small intestine), and tumor-like masses (colon). Conclusions The clinical presentations of localized intestinal amyloidosis depend on the site of the deposition of the amyloid. In most cases, amyloid deposits consisted of light chain protein.
Collapse
Affiliation(s)
- Saeed Ali Alshehri
- Department of Pathology, Armed Forces Hospitals, Southern Region, King Fahd Hospital, Saudi Arabia
| | | |
Collapse
|
28
|
Habtemariam BA, Karsten V, Attarwala H, Goel V, Melch M, Clausen VA, Garg P, Vaishnaw AK, Sweetser MT, Robbie GJ, Vest J. Single‐Dose Pharmacokinetics and Pharmacodynamics of Transthyretin Targeting N‐acetylgalactosamine–Small Interfering Ribonucleic Acid Conjugate, Vutrisiran, in Healthy Subjects. Clin Pharmacol Ther 2020; 109:372-382. [DOI: 10.1002/cpt.1974] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/15/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Varun Goel
- Alnylam Pharmaceuticals Cambridge Massachusetts USA
| | - Megan Melch
- Alnylam Pharmaceuticals Cambridge Massachusetts USA
| | | | - Pushkal Garg
- Alnylam Pharmaceuticals Cambridge Massachusetts USA
| | | | | | | | - John Vest
- Alnylam Pharmaceuticals Cambridge Massachusetts USA
| |
Collapse
|
29
|
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E, Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR, Dobson CM, Eisenberg DS, Mezzenga R. Half a century of amyloids: past, present and future. Chem Soc Rev 2020; 49:5473-5509. [PMID: 32632432 PMCID: PMC7445747 DOI: 10.1039/c9cs00199a] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China; Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hilal A. Lashuel
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ian W. Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, Centre for Microbial Research, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Raffaele Mezzenga
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
30
|
Interfacial charge transfer with exfoliated graphene inhibits fibril formation in lysozyme amyloid. Biointerphases 2020; 15:031010. [PMID: 32493017 DOI: 10.1116/6.0000019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyloid fibrillation is known to contribute in a variety of diseases including neurodegenerative disorders (e.g., Alzheimer's and Parkinson's disease) and type II diabetes. The inhibition of fibrillation has been suggested as a possible therapeutic strategy to prevent neuronal and pancreatic β-cell death associated with amyloid diseases. To this end, strong hydrophobic and π-π interactions between proteins and nanomaterials at the nanobio interface could be used to mitigate the stacking of amyloid structures associated with fibrillation. In this study, the authors show that exfoliated graphene effectively inhibits the formation of amyloid fibrils using a model amyloid-forming protein, viz., hen egg white lysozyme (HEWL). While previous theoretical models posit that hydrophobic and π-π stacking interactions result in strong interactions between graphene and proteins, the authors experimentally identified the presence of additional interfacial charge transfer interactions between HEWL and graphene using micro-Raman spectroscopy and Kelvin probe force microscopy. Their photoluminescence spectroscopy and transmission electron microscopy studies evince that the interfacial charge transfer combined with hydrophobic and π-π stacking interactions, specifically between the nanomaterial and the amino acid tryptophan, increase HEWL adsorption on graphene and thereby inhibit amyloid fibrillation.
Collapse
|
31
|
Ciccone L, Shi C, di Lorenzo D, Van Baelen AC, Tonali N. The Positive Side of the Alzheimer's Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 2020; 25:E2439. [PMID: 32456156 PMCID: PMC7288020 DOI: 10.3390/molecules25102439] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-β peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-β peptides, and in particular Aβ1-42, with other amyloids, which have been presented either as integrated part of Aβ neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aβ toxicity by taking inspiration from these protein-protein interactions.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Chenghui Shi
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Davide di Lorenzo
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| | - Anne-Cécile Van Baelen
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, Université Paris Saclay, SIMoS, 91191 Gif-sur-Yvette, France;
| | - Nicolo Tonali
- CNRS, BioCIS, Université Paris-Saclay, rue Jean-Baptiste Clément 5, 92290 Châtenay-Malabry, France; (C.S.); (D.d.L.)
| |
Collapse
|
32
|
Zhao J, Zhu M, Kumar M, Ngo FY, Li Y, Lao L, Rong J. A Pharmacological Appraisal of Neuroprotective and Neurorestorative Flavonoids Against Neurodegenerative Diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:103-114. [PMID: 30394219 DOI: 10.2174/1871527317666181105093834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & OBJECTIVE Alzheimer's disease (AD) and Parkinson's disease (PD) affect an increasing number of the elderly population worldwide. The existing treatments mainly improve the core symptoms of AD and PD in a temporary manner and cause alarming side effects. Naturally occurring flavonoids are well-documented for neuroprotective and neurorestorative effects against various neurodegenerative diseases. Thus, we analyzed the pharmacokinetics of eight potent natural products flavonoids for the druggability and discussed the neuroprotective and neurorestorative effects and the underlying mechanisms. CONCLUSION This review provides valuable clues for the development of novel therapeutics against neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Mengxia Zhu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Mukesh Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Fung Yin Ngo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yinghui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Lixing Lao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.,Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong Shenzhen, Shenzhen, China
| |
Collapse
|
33
|
Galan-Acosta L, Sierra C, Leppert A, Pouliopoulos AN, Kwon N, Noel RL, Tambaro S, Presto J, Nilsson P, Konofagou EE, Johansson J. Recombinant BRICHOS chaperone domains delivered to mouse brain parenchyma by focused ultrasound and microbubbles are internalized by hippocampal and cortical neurons. Mol Cell Neurosci 2020; 105:103498. [PMID: 32389804 DOI: 10.1016/j.mcn.2020.103498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/08/2023] Open
Abstract
The BRICHOS domain is found in human precursor proteins associated with cancer, dementia (Bri2) and amyloid lung disease (proSP-C). Recombinant human (rh) proSP-C and Bri2 BRICHOS domains delay amyloid-β peptide (Aβ) fibril formation and reduce associated toxicity in vitro and their overexpression reduces Aβ neurotoxicity in animal models of Alzheimer's disease. After intravenous administration in wild-type mice, rh Bri2, but not proSP-C, BRICHOS was detected in the brain parenchyma, suggesting that Bri2 BRICHOS selectively bypasses the blood-brain barrier (BBB). Here, our objective was to increase the brain delivery of rh proSP-C (trimer of 18 kDa subunits) and Bri2 BRICHOS (monomer to oligomer of 15 kDa subunits) using focused ultrasound combined with intravenous microbubbles (FUS + MB), which enables targeted and transient opening of the BBB. FUS + MB was targeted to one hemisphere of wild type mice and BBB opening in the hippocampal region was confirmed by magnetic resonance imaging. Two hours after FUS + MB brain histology showed no signs of tissue damage and immunohistochemistry showed abundant delivery to the brain parenchyma in 13 out of 16 cases given 10 mg/kg of proSP-C or Bri2 BRICHOS domains. The Bri2, but not proSP-C BRICHOS domain was detected also in the non-targeted hemisphere. ProSP-C and Bri2 BRICHOS domains were taken up by a subset of neurons in the hippocampus and cortex, and were detected to a minor extent in early endosomes. These results indicate that rh Bri2, but not proSP-C, BRICHOS, can be efficiently delivered into the mouse brain parenchyma and that both BRICHOS domains can be internalized by cell-specific mechanisms.
Collapse
Affiliation(s)
- L Galan-Acosta
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Neurogeriatrics, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - C Sierra
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, NY, New York, USA
| | - A Leppert
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Neurogeriatrics, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - A N Pouliopoulos
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, NY, New York, USA
| | - N Kwon
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, NY, New York, USA
| | - R L Noel
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, NY, New York, USA
| | - S Tambaro
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Neurogeriatrics, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - J Presto
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Neurogeriatrics, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - P Nilsson
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Neurogeriatrics, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - E E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, NY, New York, USA; Department of Radiology, Columbia University, NY, New York, USA
| | - J Johansson
- Department of Neurobiology, Care Sciences and Society (NVS), Division of Neurogeriatrics, Karolinska Institutet, 141 83 Huddinge, Sweden.
| |
Collapse
|
34
|
Chen G, Andrade-Talavera Y, Tambaro S, Leppert A, Nilsson HE, Zhong X, Landreh M, Nilsson P, Hebert H, Biverstål H, Fisahn A, Abelein A, Johansson J. Augmentation of Bri2 molecular chaperone activity against amyloid-β reduces neurotoxicity in mouse hippocampus in vitro. Commun Biol 2020; 3:32. [PMID: 31959875 PMCID: PMC6971075 DOI: 10.1038/s42003-020-0757-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/27/2019] [Indexed: 01/03/2023] Open
Abstract
Molecular chaperones play important roles in preventing protein misfolding and its potentially harmful consequences. Deterioration of molecular chaperone systems upon ageing are thought to underlie age-related neurodegenerative diseases, and augmenting their activities could have therapeutic potential. The dementia relevant domain BRICHOS from the Bri2 protein shows qualitatively different chaperone activities depending on quaternary structure, and assembly of monomers into high-molecular weight oligomers reduces the ability to prevent neurotoxicity induced by the Alzheimer-associated amyloid-β peptide 1-42 (Aβ42). Here we design a Bri2 BRICHOS mutant (R221E) that forms stable monomers and selectively blocks a main source of toxic species during Aβ42 aggregation. Wild type Bri2 BRICHOS oligomers are partly disassembled into monomers in the presence of the R221E mutant, which leads to potentiated ability to prevent Aβ42 toxicity to neuronal network activity. These results suggest that the activity of endogenous molecular chaperones may be modulated to enhance anti-Aβ42 neurotoxic effects. Gefei Chen et al. show that a mutated BRICHOS molecular chaperone domain from the dementia associated Bri2 can reduce toxicity of amyloid formation in mouse hippocampus in vitro. Upon mutating Arg221 to glutamate, Bri2 BRICHOS forms stable monomers that block a source of neurotoxicity during Aβ aggregation and promote disassembly of wild-type oligomers.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Yuniesky Andrade-Talavera
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Neuronal Oscillations Laboratory, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Axel Leppert
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Harriet E Nilsson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Department of Biosciences and Nutrition, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Xueying Zhong
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Department of Biosciences and Nutrition, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Michael Landreh
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65, Stockholm, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Department of Biosciences and Nutrition, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Henrik Biverstål
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden.,Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - André Fisahn
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Neuronal Oscillations Laboratory, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Axel Abelein
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57, Huddinge, Sweden.
| |
Collapse
|
35
|
Wille H, Dorosh L, Amidian S, Schmitt-Ulms G, Stepanova M. Combining molecular dynamics simulations and experimental analyses in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:33-110. [PMID: 31928730 DOI: 10.1016/bs.apcsb.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fold of a protein determines its function and its misfolding can result in loss-of-function defects. In addition, for certain proteins their misfolding can lead to gain-of-function toxicities resulting in protein misfolding diseases such as Alzheimer's, Parkinson's, or the prion diseases. In all of these diseases one or more proteins misfold and aggregate into disease-specific assemblies, often in the form of fibrillar amyloid deposits. Most, if not all, protein misfolding diseases share a fundamental molecular mechanism that governs the misfolding and subsequent aggregation. A wide variety of experimental methods have contributed to our knowledge about misfolded protein aggregates, some of which are briefly described in this review. The misfolding mechanism itself is difficult to investigate, as the necessary timescale and resolution of the misfolding events often lie outside of the observable parameter space. Molecular dynamics simulations fill this gap by virtue of their intrinsic, molecular perspective and the step-by-step iterative process that forms the basis of the simulations. This review focuses on molecular dynamics simulations and how they combine with experimental analyses to provide detailed insights into protein misfolding and the ensuing diseases.
Collapse
Affiliation(s)
- Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
36
|
Altamirano-Bustamante MM, Altamirano-Bustamante NF, Larralde-Laborde M, Lara-Martínez R, Leyva-García E, Garrido-Magaña E, Rojas G, Jiménez-García LF, Revilla-Monsalve C, Altamirano P, Calzada-León R. Unpacking the aggregation-oligomerization-fibrillization process of naturally-occurring hIAPP amyloid oligomers isolated directly from sera of children with obesity or diabetes mellitus. Sci Rep 2019; 9:18465. [PMID: 31804529 PMCID: PMC6895187 DOI: 10.1038/s41598-019-54570-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
The formation of amyloid oligomers and fibrils of the human islet amyloid polypeptide (hIAPP) has been linked with β- cell failure and death which causes the onset, progression, and comorbidities of diabetes. We begin to unpack the aggregation-oligomerization-fibrillization process of these oligomers taken from sera of pediatric patients. The naturally occurring or real hIAPP (not synthetic) amyloid oligomers (RIAO) were successfully isolated, we demonstrated the presence of homo (dodecamers, hexamers, and trimers) and hetero-RIAO, as well as several biophysical characterizations which allow us to learn from the real phenomenon taking place. We found that the aggregation/oligomerization process is active in the sera and showed that it happens very fast. The RIAO can form fibers and react with anti-hIAPP and anti-amyloid oligomers antibodies. Our results opens the epistemic horizon and reveal real differences between the four groups (Controls vs obesity, T1DM or T2DM) accelerating the process of understanding and discovering novel and more efficient prevention, diagnostic, transmission and therapeutic pathways.
Collapse
Affiliation(s)
- Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico.
| | | | - Mateo Larralde-Laborde
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Edgar Leyva-García
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Eulalia Garrido-Magaña
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Gerardo Rojas
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | - Perla Altamirano
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico city, Mexico
| | | |
Collapse
|
37
|
Giannini G, Nast CC. An Organ System-Based Approach to Differential Diagnosis of Amyloid Type in Surgical Pathology. Arch Pathol Lab Med 2019; 144:379-387. [PMID: 31697170 DOI: 10.5858/arpa.2018-0509-ra] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Amyloidosis is an uncommon but important entity. A protein-based classification of amyloidosis defines the underlying disease process, directing clinical management and providing prognostic information. However, in routine surgical pathology there often is no attempt to classify amyloid other than staining to determine light chain-associated amyloidosis. Systemic and localized amyloidosis vary with respect to frequency of organ involvement by different amyloid types, and most amyloid proteins have commercial antibodies available for identification. OBJECTIVE.— To provide a guide for the likelihood of amyloid type by organ system. DATA SOURCES.— Literature review based on PubMed searches containing the word amyloid, specifically addressing the prevalence and significance of amyloid proteins in each organ system other than the brain, and the authors' practice experience. CONCLUSIONS.— In patients with amyloidosis, determination of the responsible protein is critical for appropriate patient care. In large subspecialty practices and reference laboratories with experience in using and analyzing relevant immunohistochemistry, most amyloid proteins can be identified with an organ-specific algorithm. Referring to an organ-based algorithm may be helpful in providing clinicians with a more specific differential diagnosis regarding amyloid type to help guide clinical evaluation and treatment. When the protein cannot be characterized, mass spectrometry can be performed to definitively classify the amyloid type.
Collapse
Affiliation(s)
- Gabriel Giannini
- From the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Cynthia C Nast
- From the Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
38
|
Identification of Novel 1,3,5-Triphenylbenzene Derivative Compounds as Inhibitors of Hen Lysozyme Amyloid Fibril Formation. Int J Mol Sci 2019; 20:ijms20225558. [PMID: 31703381 PMCID: PMC6888386 DOI: 10.3390/ijms20225558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 11/16/2022] Open
Abstract
Deposition of soluble proteins as insoluble amyloid fibrils is associated with a number of pathological states. There is a growing interest in the identification of small molecules that can prevent proteins from undergoing amyloid fibril formation. In the present study, a series of small aromatic compounds with different substitutions of 1,3,5-triphenylbenzene have been synthesized and their possible effects on amyloid fibril formation by hen egg white lysozyme (HEWL), a model protein for amyloid formation, and of their resulting toxicity were examined. The inhibitory effect of the compounds against HEWL amyloid formation was analyzed using thioflavin T and Congo red binding assays, atomic force microscopy, Fourier-transform infrared spectroscopy, and cytotoxicity assays, such as the 3-(4,5-Dimethylthiazol)-2,5-Diphenyltetrazolium Bromide (MTT) reduction assay and caspase-3 activity measurements. We found that all compounds in our screen were efficient inhibitors of HEWL fibril formation and their associated toxicity. We showed that electron-withdrawing substituents such as –F and –NO2 potentiated the inhibitory potential of 1,3,5-triphenylbenzene, whereas electron-donating groups such as –OH, –OCH3, and –CH3 lowered it. These results may ultimately find applications in the development of potential inhibitors against amyloid fibril formation and its biologically adverse effects.
Collapse
|
39
|
Ahmad SS, Kamal MA. Current Updates on the Regulation of Beta-Secretase Movement as a Potential Restorative Focus for Management of Alzheimer's Disease. Protein Pept Lett 2019; 26:579-587. [DOI: 10.2174/0929866526666190405125334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/16/2019] [Accepted: 03/17/2019] [Indexed: 11/22/2022]
Abstract
The most recent decade was described by a developing awareness about the
seriousness of dementia in the field of age-related people. Among the dementias, Alzheimer's
assumes a plentiful role as a result of its amazingly high rate and casualty. A few
pharmacological procedures have been attempted yet at the same time now, Alzheimer continues
being an untreatable malady. The collection of Aβ in the brain is an early poisonous occasion in
the pathogenesis of Alzheimer's disease, which is the most widely recognized type of dementia
correlated with plaques and tangles within the brain. However, the mechanism of the
intraneuronal direction of BACE1 is poorly understood. AD is caused by mutations in one of the
genes that encoding APP, presenilins 1 and 2. Most of the mutations in these genes increase
Aβ42 production. Numerous receptors are associated with initiating Aβ transport and clearance.
Among them, RAGE is an influx transport receptor that binds soluble Aβ and mediates
pathophysiological cellular responses. RAGE additionally intervenes the vehicle of plasma Aβ
over the blood-brain barrier. LRP-1 functions as a clearance receptor for Aβ at the blood-brain
barrier. The regulation of beta-secretase movement is being explored as a potential restorative
focus for treating AD.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
40
|
Inoue M, Ueda M, Higashi T, Anno T, Fujisawa K, Motoyama K, Mizuguchi M, Ando Y, Jono H, Arima H. Therapeutic Potential of Polyamidoamine Dendrimer for Amyloidogenic Transthyretin Amyloidosis. ACS Chem Neurosci 2019; 10:2584-2590. [PMID: 30912637 DOI: 10.1021/acschemneuro.9b00059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Amyloidogenic transthyretin (ATTR) amyloidosis is caused by a formation of ATTR amyloid fibrils. Because ATTR misfolding triggers the formation of aggregates and amyloid fibrils, which are considered to deposit on the tissues, novel clinically effective therapeutic strategies targeted to those processes are urgently needed. In this study, to discover a new drug candidate for ATTR amyloidosis therapy, we focused on polyamidoamine dendrimer (dendrimer), a 3D-structural nanomaterial, which has a branched cationic polymer repeating polyamidoamine units. Dendrimer (G2) not only inhibited ATTR V30M amyloid fibril formation, but also reduced already formed ATTR V30M amyloid fibrils by reducing β-sheet structure of ATTR V30M protein. Moreover, intravenous administration of dendrimer (G2) reduced TTR deposition in human ATTR V30M transgenic rats. These results indicate that dendrimer (G2) may possess both inhibitory and breaking effects on ATTR V30M amyloid, suggesting that dendrimer has the potential as a dual effective agents against TTR amyloidosis.
Collapse
Affiliation(s)
- Masamichi Inoue
- Program for Leading Graduate Schools ‘Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program’, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | | | | | | - Mineyuki Mizuguchi
- Laboratory of Structual Biology, Graduate School of Medicine and Pharmaceutical Sciences, Toyama University, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | - Hidetoshi Arima
- Program for Leading Graduate Schools ‘Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program’, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
41
|
Expression of Aβ42, τ-Protein, p16, p53 in Buccal Epithelium: Prospects for Use in the Diagnostics of Alzheimer's Disease and Rate of Aging. Bull Exp Biol Med 2019; 166:676-679. [PMID: 30903490 DOI: 10.1007/s10517-019-04416-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 10/27/2022]
Abstract
The expression of Aβ42, and τ-protein, and p16 and p53 proteins was analyzed in the buccal epithelium of elderly and senile patients with Alzheimer's disease. We revealed enhanced synthesis of Alzheimer's disease markers Aβ42 (by 15-30 times) and τ-protein (by 5 times) in comparison with the corresponding values in people without neurodegenerative pathology of the same age groups. In addition, increased synthesis of proteins of cell aging and apoptosis p16 (by 6-10 times) and p53 (by 2-3 times) was observed in patients in comparison with age-matched persons without neuropathology. These data suggest that complex analysis of the expression of Aβ42, τ-protein, p16, and p53 in the buccal epithelium is a promising method for in vivo diagnosis of Alzheimer's disease and assessment of the rate of aging during the development of this pathology.
Collapse
|
42
|
Iannotti MJ, MacArthur R, Jones R, Tao D, Singeç I, Michael S, Inglese J. Detecting Secretory Proteins by Acoustic Droplet Ejection in Multiplexed High-Throughput Applications. ACS Chem Biol 2019; 14:497-505. [PMID: 30699290 DOI: 10.1021/acschembio.9b00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nearly one-third of the encoded proteome is comprised of secretory proteins that enable communication between cells and organ systems, playing a ubiquitous role in human health and disease. High-throughput detection of secreted proteins would enhance efforts to identify therapies for secretion-related diseases. Using the Z mutant of alpha-1 antitrypsin as a human secretory model, we have developed 1536-well high-throughput screening assays that utilize acoustic droplet ejection to transfer nanoliter volumes of sample for protein quantification. Among them, the acoustic reverse phase protein array (acoustic RPPA) is a multiplexable, low-cost immunodetection technology for native, endogenously secreted proteins from physiologically relevant model systems like stem cells that is compatible with plate-based instrumentation. Parallel assay profiling with the LOPAC1280 chemical library validated performance and orthogonality between a secreted bioluminescent reporter and acoustic RPPA method by consistently identifying secretory modulators with comparable concentration response relationships. Here, we introduce a robust, multiplexed drug discovery platform coupling extracellular protein quantification by acoustic RPPA with intracellular and cytotoxicity analyses from single wells, demonstrating proof-of-principle applications for human induced pluripotent stem cell-derived hepatocytes.
Collapse
Affiliation(s)
- Michael J. Iannotti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ryan MacArthur
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Richard Jones
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
43
|
Zhao Y, Cai J, Liu Z, Li Y, Zheng C, Zheng Y, Chen Q, Chen H, Ma F, An Y, Xiao L, Jiang C, Shi L, Kang C, Liu Y. Nanocomposites Inhibit the Formation, Mitigate the Neurotoxicity, and Facilitate the Removal of β-Amyloid Aggregates in Alzheimer's Disease Mice. NANO LETTERS 2019; 19:674-683. [PMID: 30444372 DOI: 10.1021/acs.nanolett.8b03644] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible brain disorder. Recent studies revealed the pivotal role of β-amyloid (Aβ) in AD. However, there is no conclusive indication that the existing therapeutic strategies exerted any effect on the mitigation of Aβ-induced neurotoxicity and the elimination of Aβ aggregates simultaneously in vivo. Herein, we developed a novel nanocomposite that can eliminate toxic Aβ aggregates and mitigate Aβ-induced neurotoxicity in AD mice. This nanocomposite was designed to be a small-sized particle (14 ± 4 nm) with Aβ-binding peptides (KLVFF) integrated on the surface. The nanocomposite was prepared by wrapping a protein molecule with a cross-linked KLVFF-containing polymer layer synthesized by in situ polymerization. The presence of the nanocomposite remarkably changed the morphology of Aβ aggregates, which led to the formation of Aβ/nanocomposite coassembled nanoclusters instead of Aβ oligomers. With the reduction of the pathological Aβ oligomers, the nanocomposites attenuated the Aβ-induced neuron damages, regained endocranial microglia's capability to phagocytose Aβ, and eventually protected hippocampal neurons against apoptosis. Thus, we anticipate that the small-sized nanocomposite will potentially offer a feasible strategy in the development of novel AD treatments.
Collapse
Affiliation(s)
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute , Heilongjiang Academy of Medical Sciences , Harbin 150086 , China
| | | | - Yansheng Li
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery , Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma , Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052 , China
| | | | | | - Qun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute , Heilongjiang Academy of Medical Sciences , Harbin 150086 , China
| | - Hongyun Chen
- National Institute for Advanced Materials, School of Material Science and Engineering , Nankai University , Tianjin , 300350 , China
| | | | | | | | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute , Heilongjiang Academy of Medical Sciences , Harbin 150086 , China
| | | | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery , Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma , Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052 , China
| | - Yang Liu
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery , Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma , Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052 , China
| |
Collapse
|
44
|
Petek B, Villa-Lopez M, Loera-Valencia R, Gerenu G, Winblad B, Kramberger MG, Ismail MAM, Eriksdotter M, Garcia-Ptacek S. Connecting the brain cholesterol and renin-angiotensin systems: potential role of statins and RAS-modifying medications in dementia. J Intern Med 2018; 284:620-642. [PMID: 30264910 DOI: 10.1111/joim.12838] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Millions of people worldwide receive agents targeting the renin-angiotensin system (RAS) to treat hypertension or statins to lower cholesterol. The RAS and cholesterol metabolic pathways in the brain are autonomous from their systemic counterparts and are interrelated through the cholesterol metabolite 27-hydroxycholesterol (27-OHC). These systems contribute to memory and dementia pathogenesis through interference in the amyloid-beta cascade, vascular mechanisms, glucose metabolism, apoptosis, neuroinflammation and oxidative stress. Previous studies examining the relationship between these treatments and cognition and dementia risk have produced inconsistent results. Defining the blood-brain barrier penetration of these medications has been challenging, and the mechanisms of action on cognition are not clearly established. Potential biases are apparent in epidemiological and clinical studies, such as reverse epidemiology, indication bias, problems defining medication exposure, uncertain and changing doses, and inappropriate grouping of outcomes and medications. This review summarizes current knowledge of the brain cholesterol and RAS metabolism and the mechanisms by which these pathways affect neurodegeneration. The putative mechanisms of action of statins and medications inhibiting the RAS will be examined, together with prior clinical and animal studies on their effects on cognition. We review prior epidemiological studies, analysing their strengths and biases, and identify areas for future research. Understanding the pathophysiology of the brain cholesterol system and RAS and their links to neurodegeneration has enormous potential. In future, well-designed epidemiological studies could identify potential treatments for Alzheimer's disease (AD) amongst medications that are already in use for other indications.
Collapse
Affiliation(s)
- B Petek
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, University Medical Centre, Ljubljana, Slovenia.,University of Ljubljana, Ljubljana, Slovenia
| | - M Villa-Lopez
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - R Loera-Valencia
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - G Gerenu
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosciences, Biodonostia Health Research Institute, San Sebastian, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, CIBERNED, Health Institute Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - B Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - M G Kramberger
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, University Medical Centre, Ljubljana, Slovenia.,University of Ljubljana, Ljubljana, Slovenia
| | - M-A-M Ismail
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Neuro, Diseases of the Nervous System patient flow, Karolinska University Hospital, Huddinge, Sweden
| | - M Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - S Garcia-Ptacek
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Internal Medicine, Neurology Section, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
45
|
New Histologic Finding of Amyloid Insulin Bodies at an Insulin Injection Site in a Patient With Diabetes. Am J Dermatopathol 2018; 40:527-530. [PMID: 29135508 DOI: 10.1097/dad.0000000000001052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amyloidosis is a heterogeneous group of protein deposition diseases with more than 40 known clinical presentations. Localized amyloidosis occurs when the protein deposits exist in a singular location. Patients with diabetes mellitus who inject insulin at the same site can develop localized insulin-derived amyloidosis (AIns) at the injection site, which can be confused clinically with lipoma, lipohyperplasia, lipoatrophy, and fat necrosis. Histologic examination is performed to confirm localized AIns. We report a case of a patient with a long history of type 2 diabetes who presented with a subcutaneous mass in the abdomen at a preferred insulin injection site. Examination by light microscopy revealed diffuse deposition of eosinophilic material. Two of the tissue fragments contained numerous 30-40 μm spherical bodies within the eosinophilic material. The bodies had dark centers with peripheral eosinophilic material. Polarized sections stained with Congo red showed apple green birefringence, a characteristic of amyloid. Immunohistochemistry was positive for insulin antibodies in the dark spherules and the surrounding matrix. Proteomic analysis by mass spectrometry showed that the Congo red-positive material was insulin. Electron microscopy showed a background matrix consisting of nonbranching protein fibrils measuring 8.8-16.1 nm, consistent with amyloid; the spherules contained dark globular proteins in the center surrounded by nonbranching fibrillary proteins. Because these spherules were positive for insulin by immunohistochemistry and showed amyloid ultrastructurally, we refer to them as amyloid insulin bodies. The identification of AIns, specifically with amyloid insulin bodies, is important for diagnosis and treatment and may further our understanding of amyloidogenesis.
Collapse
|
46
|
Al-Halifa S, Babych M, Zottig X, Archambault D, Bourgault S. Amyloid self-assembling peptides: Potential applications in nanovaccine engineering and biosensing. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soultan Al-Halifa
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| | - Margaryta Babych
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| | - Ximena Zottig
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| | - Denis Archambault
- Department of Biological Sciences; Université du Québec à Montréal; Montreal, QC Canada
- Swine and Poultry Infectious Diseases Research Centre, CRIPA; QC Canada
| | - Steve Bourgault
- Department of Chemistry; Université du Québec à Montréal; Montreal, QC Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO; Québec QC Canada
| |
Collapse
|
47
|
Uchihara Y, Iwata E, Papadimitriou-Olivgeri I, Herrero-Charrington D, Tanaka Y, Athanasou NA. Localised foot and ankle amyloid deposition. Pathol Res Pract 2018; 214:1661-1666. [PMID: 30173946 DOI: 10.1016/j.prp.2018.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Localised (transthyretin-associated) amyloid is commonly seen in articular/periarticular tissues of elderly individuals. Whether age-associated, amyloid deposition occurs in foot and ankle (F&A) tissues has not previously been investigated. In this study we assessed the nature and frequency of F&A amyloid deposition and determined whether it is associated with age and/or specific articular/periarticular F&A lesions. METHODS Histological sections of twenty five normal F&A articular/periarticular tissues (16-71 years) and a range of F&A lesions were stained by Congo Red. The amyloid protein was identified by immunohistochemistry and type of matrix glycosaminoglycans determined by Alcian Blue (critical electrolyte concentration) histochemistry. RESULTS Amyloid deposits were found in the joint cartilage and capsule of 3/25 normal specimens (57, 62 and 78 years). Amyloid deposits were small, contained transthyretin, and found in areas of matrix degeneration associated with the presence of highly sulphated glycosaminoglycans. In patients older than 47 years, small amyloid deposits were noted in some F&A lesions, including osteoarthritis, Charcot arthropathy, bursa, ganglion, chondrocalcinosis, gout, calcific tendonitis and Achilles tendonitis. CONCLUSION Small localised amyloid deposits in F&A tissues contain transthyretin and occur in areas of matrix degeneration associated with the presence of highly sulphated glycosaminoglycans; these deposits are age-associated and, although seen more commonly in some F&A lesions, are small and unlikely to be of pathogenic significance.
Collapse
Affiliation(s)
- Y Uchihara
- Department of Orthopaedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - E Iwata
- Department of Orthopaedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - I Papadimitriou-Olivgeri
- Department of Histopathology, NDORMS, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE, UK
| | - D Herrero-Charrington
- Department of Histopathology, NDORMS, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE, UK
| | - Y Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | - N A Athanasou
- Department of Histopathology, NDORMS, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE, UK.
| |
Collapse
|
48
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
49
|
Loera-Valencia R, Piras A, Ismail MAM, Manchanda S, Eyjolfsdottir H, Saido TC, Johansson J, Eriksdotter M, Winblad B, Nilsson P. Targeting Alzheimer's disease with gene and cell therapies. J Intern Med 2018; 284:2-36. [PMID: 29582495 DOI: 10.1111/joim.12759] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) causes dementia in both young and old people affecting more than 40 million people worldwide. The two neuropathological hallmarks of the disease, amyloid beta (Aβ) plaques and neurofibrillary tangles consisting of protein tau are considered the major contributors to the disease. However, a more complete picture reveals significant neurodegeneration and decreased cell survival, neuroinflammation, changes in protein and energy homeostasis and alterations in lipid and cholesterol metabolism. In addition, gene and cell therapies for severe neurodegenerative disorders have recently improved technically in terms of safety and efficiency and have translated to the clinic showing encouraging results. Here, we review broadly current data within the field for potential targets that could modify AD through gene and cell therapy strategies. We envision that not only Aβ will be targeted in a disease-modifying treatment strategy but rather that a combination of treatments, possibly at different intervention times may prove beneficial in curing this devastating disease. These include decreased tau pathology, neuronal growth factors to support neurons and modulation of neuroinflammation for an appropriate immune response. Furthermore, cell based therapies may represent potential strategies in the future.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - A Piras
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - M A M Ismail
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.,Theme Neuro, Diseases of the Nervous System Patient Flow, Karolinska University Hospital, Huddinge, Sweden
| | - S Manchanda
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - H Eyjolfsdottir
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - T C Saido
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - J Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - M Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - P Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
50
|
Transthyretin Interferes with Aβ Amyloid Formation by Redirecting Oligomeric Nuclei into Non-Amyloid Aggregates. J Mol Biol 2018; 430:2722-2733. [PMID: 29890120 DOI: 10.1016/j.jmb.2018.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022]
Abstract
The pathological Aβ aggregates associated with Alzheimer's disease follow a nucleation-dependent path of formation. A nucleus represents an oligomeric assembly of Aβ peptides that acts as a template for subsequent incorporation of monomers to form a fibrillar structure. Nuclei can form de novo or via surface-catalyzed secondary nucleation, and the combined rates of elongation and nucleation control the overall rate of fibril formation. Transthyretin (TTR) obstructs Aβ fibril formation in favor of alternative non-fibrillar assemblies, but the mechanism behind this activity is not fully understood. This study shows that TTR does not significantly disturb fibril elongation; rather, it effectively interferes with the formation of oligomeric nuclei. We demonstrate that this interference can be modulated by altering the relative contribution of elongation and nucleation, and we show how TTR's effects can range from being essentially ineffective to almost complete inhibition of fibril formation without changing the concentration of TTR or monomeric Aβ.
Collapse
|