1
|
Wang X, Su L, Han J, Han Y, Yin Y, Huang J, Tang Y, Zhao Y, Qin Q. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations in conjunction with systemic lupus erythematosus: Missed diagnosis or misdiagnosis? Immun Inflamm Dis 2024; 12:e1367. [PMID: 39119967 PMCID: PMC11310852 DOI: 10.1002/iid3.1367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is a rare autosomal dominant systemic microvascular disorder attributed to TREX1 (three-prime repair exonuclease-1) gene mutations, often proned to misdiagnosed. METHODS We reported a case of RVCL-S coexisting with systemic lupus erythematosus due to a mutation in the TREX1 gene. This study provided a summary and discussion of previously documented cases related to TREX1 mutations or RVCL-S. RESULTS A 39-year-old female patient visited the clinic due to progressive memory loss and speech difficulties. Magnetic resonance imaging results showed corpus callosum atrophy and multiple subcortical calcifications in both brain hemispheres. Genetic testing revealed a TREX1 gene mutation (c.294dupA). Treatment with immunosuppressive therapy for 2 months led to improvements in communication and mobility. We also summarized previously reported cases providing an overview of TREX1 gene mutation or RCVL-S. CONCLUSION Our case establishes a compelling foundation for future RVCL-S diagnosis and treatment paradigms. Notably, conducting systemic immunity screening in patients with RVCL-S emerges as a strategic approach to prevent potential diagnostic oversights.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Geriatrics, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- Innovation Center for Neurological Disorders, Department of NeurologyXuanwu Hospital, Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Li Su
- Department of Rheumatology and AllergyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Jinming Han
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yilai Han
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yunsi Yin
- Innovation Center for Neurological Disorders, Department of NeurologyXuanwu Hospital, Capital Medical University, National Center for Neurological DisordersBeijingChina
| | | | - Yi Tang
- Innovation Center for Neurological Disorders, Department of NeurologyXuanwu Hospital, Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Yi Zhao
- Department of Rheumatology and AllergyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Qi Qin
- Innovation Center for Neurological Disorders, Department of NeurologyXuanwu Hospital, Capital Medical University, National Center for Neurological DisordersBeijingChina
| |
Collapse
|
2
|
Martin AJ. Retinal vasculopathy with cerebral leukoencephalopathy: a rare mimic of CNS vasculitis. Pract Neurol 2024:pn-2024-004246. [PMID: 39084908 DOI: 10.1136/pn-2024-004246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Retinal vasculopathy with cerebral leukoencephalopathy is a rare autosomal dominant genetic disorder due to mutation in the TREX1 gene and presents with both central nervous system (CNS) and other organ dysfunction. It is often misdiagnosed as demyelination or vasculitis based on imaging features, often with potentially harmful immunotherapy given unnecessarily. This report describes two sisters with progressive hemiparesis, retinal vasculopathy and hepatic dysfunction, one of whom was initially misdiagnosed and treated for cerebral vasculitis. Imaging showed extensive and asymmetric white matter lesions with persistent diffusion restriction and contrast enhancement. Extensive autoimmune and infectious investigations were unremarkable. Both patients had a novel heterozygous variant in the TREX1 gene, giving a diagnosis of retinal vasculopathy with cerebral leukoencephalopathy. Clinicians should consider this condition in atypical presentations of suspected demyelination or CNS vasculitis.
Collapse
Affiliation(s)
- Andrew J Martin
- Neurology Department, Blacktown Hospital, Blacktown, New South Wales, Australia
| |
Collapse
|
3
|
Wilms AE, de Boer I, Pelzer N, In't Veld SGJG, Middelkoop HAM, Teunissen CE, Terwindt GM. NFL and GFAP in (pre)symptomatic RVCL-S carriers: a monogenic cerebral small vessel disease. J Neurol 2024; 271:4138-4145. [PMID: 38581544 PMCID: PMC11233383 DOI: 10.1007/s00415-024-12292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) have emerged as biomarkers for cerebral small vessel disease (SVD). We investigated their role in a hereditary SVD model, retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S). METHODS NfL and GFAP levels of 17 pre-symptomatic, 22 symptomatic RVCL-S mutation carriers and 69 controls were measured using a Simoa assay. We assessed the association of serum and cerebrospinal fluid (CSF) levels of NfL and GFAP with RVCL-S symptomatology and neuropsychological functioning. RESULTS Serum and CSF NfL levels were higher in symptomatic RVCL-S compared to controls ≥ 45 years (33.5 pg/mL vs. 9.2 pg/mL, p < 0.01; 8.5*102 pg/mL vs. 3.9*102 pg/mL, p < 0.01, respectively). Serum NfL levels were higher in symptomatic RVCL-S than pre-symptomatic carriers (33.5 pg/mL vs. 5.9 pg/mL, p = 0.02). Pre-symptomatic RVCL-S carriers had increased CSF NfL levels compared to controls < 45 years (5.2*102 pg/mL vs. 1.9*102 pg/mL, p < 0.01). No differences were found in GFAP levels across groups, but in RVCL-S carriers higher serum levels of both NfL and GFAP were linked to poorer global cognitive functioning (β[95%CI] = - 2.86 [- 5.58 to - 0.13], p = 0.04 and β[95%CI] = - 6.85 [- 11.54 to - 2.15], p = 0.01, respectively) and prolonged psychomotor test times (β[95%CI] = 6.71 [0.78-12.65], p = 0.03 and β[95%CI] = 13.84 [3.09-24.60], p = 0.01). DISCUSSION Higher levels of serum NfL and GFAP are associated with worse cognitive functioning in RVCL-S carriers and may serve as marker for disease progression. CSF NfL levels may serve as early marker as pre-symptomatic RVCL-S patients already show differences compared to young controls.
Collapse
Affiliation(s)
- Annelise E Wilms
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - I de Boer
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - N Pelzer
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - S G J G In't Veld
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - H A M Middelkoop
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
- Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, Leiden, The Netherlands
| | - C E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G M Terwindt
- Department of Neurology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands.
| |
Collapse
|
4
|
Braune M, Metelmann M, de Fallois J, Pfrepper C, Barrantes-Freer A, Hiller GGR, Unger S, Seelow E, Halbritter J, Pelz JO. Imbalance of the von Willebrand Factor - ADAMTS-13 axis in patients with retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S). Neurol Res Pract 2024; 6:32. [PMID: 38898536 PMCID: PMC11188181 DOI: 10.1186/s42466-024-00327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is an ultra-rare, autosomal-dominant small vessel disease caused by loss-of-function variants in the gene TREX1. Recently, elevated serum levels of von Willebrand Factor Antigen (vWF-Ag) pointed to an underlying endotheliopathy, and microvascular ischemia was suggested to contribute to the neurodegeneration in RVCL-S. Aim of this study was to further elucidate the endotheliopathy in RVCL-S. METHODS vWF-Ag and ADAMTS-13 activity were repeatedly measured in two patients with genetically confirmed RVCL-S. Renal biopsy of both RVCL-S patients and autoptic brain, renal, hepatic, and pulmonary specimen of one patient with RVCL-S were examined immunohistochemically in comparison to matched controls. In addition, cerebral methylome analysis was performed in the autoptic brain specimen calculating differentially methylated positions compared to controls. RESULTS While vWF-Ag and activity was strongly elevated, ADAMTS-13 activity was low in RVCL-S and further decreased over the course of the disease. Autoptic brain specimen showed signs of thromboinflammation in cerebral small vessels, and vWF-Ag staining was strongly positive in cerebral and renal small vessels in RVCL-S, while only a light to moderate vWF-Ag staining was found in controls. Cerebral methylome analysis yielded 115 differentially methylated CpGs (p < 0.05) in the deceased RVCL-S patient compared to the eight controls without brain pathology. One of the hypomethylated genes coded for ADAMTS-13 (p = 0.00056). CONCLUSIONS These findings point to an imbalance of the vWF - ADAMTS-13 axis in patients with RVCL-S, that may finally lead to an accumulation of vWF-Ag in renal and cerebral small vessels. Elevated vWF-Ag levels may serve as an early serum marker reflecting disease activity. If confirmed, therapeutic approaches might aim at an inhibition of vWF-Ag or increase of ADAMTS-13 activity in the future.
Collapse
Affiliation(s)
- Max Braune
- Paul-Flechsig-Institute for Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Moritz Metelmann
- Department of Neurology, University Hospital Leipzig, Liebigstraße 20, Leipzig, 04103, Germany
| | | | - Christian Pfrepper
- Division of Haemostaseology, Medical Department I, University Hospital Leipzig, Leipzig, Germany
| | - Alonso Barrantes-Freer
- Paul-Flechsig-Institute for Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | | | - Susette Unger
- Division of Rheumatology, Hospital St. Georg, Leipzig, Germany
| | - Evelyn Seelow
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Halbritter
- Division of Nephrology, University Hospital Leipzig, Leipzig, Germany.
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Johann Otto Pelz
- Department of Neurology, University Hospital Leipzig, Liebigstraße 20, Leipzig, 04103, Germany.
| |
Collapse
|
5
|
Zalaquett NG, Salameh E, Kim JM, Ghanbarian E, Tawk K, Abouzari M. The Dawn and Advancement of the Knowledge of the Genetics of Migraine. J Clin Med 2024; 13:2701. [PMID: 38731230 PMCID: PMC11084801 DOI: 10.3390/jcm13092701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Migraine is a prevalent episodic brain disorder known for recurrent attacks of unilateral headaches, accompanied by complaints of photophobia, phonophobia, nausea, and vomiting. Two main categories of migraine are migraine with aura (MA) and migraine without aura (MO). Main body: Early twin and population studies have shown a genetic basis for these disorders, and efforts have been invested since to discern the genes involved. Many techniques, including candidate-gene association studies, loci linkage studies, genome-wide association, and transcription studies, have been used for this goal. As a result, several genes were pinned with concurrent and conflicting data among studies. It is important to understand the evolution of techniques and their findings. Conclusions: This review provides a chronological understanding of the different techniques used from the dawn of migraine genetic investigations and the genes linked with the migraine subtypes.
Collapse
Affiliation(s)
- Nader G. Zalaquett
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Elio Salameh
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Jonathan M. Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Elham Ghanbarian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Karen Tawk
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Hoogeveen ES, Pelzer N, Ghariq E, van Osch MJP, Dahan A, Terwindt GM, Kruit MC. Cerebrovascular reactivity to hypercapnia in patients with migraine: A dual-echo arterial spin labeling MRI study. Headache 2024; 64:276-284. [PMID: 38429974 DOI: 10.1111/head.14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 03/03/2024]
Abstract
OBJECTIVE This study aimed to compare cerebrovascular reactivity between patients with migraine and controls using state-of-the-art magnetic resonance imaging (MRI) techniques. BACKGROUND Migraine is associated with an increased risk of cerebrovascular disease, but the underlying mechanisms are still not fully understood. Impaired cerebrovascular reactivity has been proposed as a link. Previous studies have evaluated cerebrovascular reactivity with different methodologies and results are conflicting. METHODS In this single-center, observational, case-control study, we included 31 interictal patients with migraine without aura (aged 19-66 years, 17 females) and 31 controls (aged 22-64 years, 18 females) with no history of vascular disease. Global and regional cerebrovascular reactivities were assessed with a dual-echo arterial spin labeling (ASL) 3.0 T MRI scan of the brain which measured the change in cerebral blood flow (CBF) and BOLD (blood oxygen level dependent) signal to inhalation of 5% carbon dioxide. RESULTS When comparing patients with migraine to controls, cerebrovascular reactivity values were similar between the groups, including mean gray matter CBF-based cerebrovascular reactivity (3.2 ± 0.9 vs 3.4 ± 1% ΔCBF/mmHg CO2 ; p = 0.527), mean gray matter BOLD-based cerebrovascular reactivity (0.18 ± 0.04 vs 0.18 ± 0.04% ΔBOLD/mmHg CO2 ; p = 0.587), and mean white matter BOLD-based cerebrovascular reactivity (0.08 ± 0.03 vs 0.08 ± 0.02% ΔBOLD/mmHg CO2 ; p = 0.621).There was no association of cerebrovascular reactivity with monthly migraine days or migraine disease duration (all analyses p > 0.05). CONCLUSION Cerebrovascular reactivity to carbon dioxide seems to be preserved in patients with migraine without aura.
Collapse
Affiliation(s)
- E S Hoogeveen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - N Pelzer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Ghariq
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology and Nuclear Medicine, Medisch Spectrum Twente, Enschede, The Netherlands
| | - M J P van Osch
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - A Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - G M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - M C Kruit
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Nattmann A, Kunstmann E, Gernert M, Schwabe D. [Rare cause of occlusive retinal vasculopathy]. DIE OPHTHALMOLOGIE 2024; 121:141-145. [PMID: 37816831 DOI: 10.1007/s00347-023-01929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023]
Affiliation(s)
- Anja Nattmann
- Augenklinik und Poliklinik, Universitätsklinikum Würzburg, Würzburg, Deutschland.
| | - Erdmute Kunstmann
- Institut für Humangenetik, Universität Würzburg, Würzburg, Deutschland
| | - Michael Gernert
- Medizinische Klinik II, Abteilung für Rheumatologie und klinische Immunologie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Dorothee Schwabe
- Augenklinik und Poliklinik, Universitätsklinikum Würzburg, Würzburg, Deutschland
| |
Collapse
|
8
|
Meschia JF, Worrall BB, Elahi FM, Ross OA, Wang MM, Goldstein ED, Rost NS, Majersik JJ, Gutierrez J. Management of Inherited CNS Small Vessel Diseases: The CADASIL Example: A Scientific Statement From the American Heart Association. Stroke 2023; 54:e452-e464. [PMID: 37602377 DOI: 10.1161/str.0000000000000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Lacunar infarcts and vascular dementia are important phenotypic characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the most common inherited cerebral small vessel disease. Individuals with the disease show variability in the nature and onset of symptoms and rates of progression, which are only partially explained by differences in pathogenic mutations in the NOTCH3 gene. Recognizing the disease early in its course and securing a molecular diagnosis are important clinical goals, despite the lack of proven disease-modifying treatments. The purposes of this scientific statement are to review the clinical, genetic, and imaging aspects of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, contrasting it with other inherited small vessel diseases, and to provide key prevention, management, and therapeutic considerations with the intent of reducing practice variability and encouraging production of high-quality evidence to support future treatment recommendations.
Collapse
|
9
|
de Moraes MPM, do Nascimento RRNR, Abrantes FF, Pedroso JL, Perazzio SF, Barsottini OGP. What General Neurologists Should Know about Autoinflammatory Syndromes? Brain Sci 2023; 13:1351. [PMID: 37759952 PMCID: PMC10526530 DOI: 10.3390/brainsci13091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Autoinflammatory disorders encompass a wide range of conditions with systemic and neurological symptoms, which can be acquired or inherited. These diseases are characterized by an abnormal response of the innate immune system, leading to an excessive inflammatory reaction. On the other hand, autoimmune diseases result from dysregulation of the adaptive immune response. Disease flares are characterized by systemic inflammation affecting the skin, muscles, joints, serosa, and eyes, accompanied by unexplained fever and elevated acute phase reactants. Autoinflammatory syndromes can present with various neurological manifestations, such as aseptic meningitis, meningoencephalitis, sensorineural hearing loss, and others. Early recognition of these manifestations by general neurologists can have a significant impact on the prognosis of patients. Timely and targeted therapy can prevent long-term disability by reducing chronic inflammation. This review provides an overview of recently reported neuroinflammatory phenotypes, with a specific focus on genetic factors, clinical manifestations, and treatment options. General neurologists should have a good understanding of these important diseases.
Collapse
Affiliation(s)
| | | | - Fabiano Ferreira Abrantes
- Department of Neurology, Universidade Federal de São Paulo, São Paulo 04039-002, Brazil; (M.P.M.d.M.); (F.F.A.); (J.L.P.)
| | - José Luiz Pedroso
- Department of Neurology, Universidade Federal de São Paulo, São Paulo 04039-002, Brazil; (M.P.M.d.M.); (F.F.A.); (J.L.P.)
| | - Sandro Félix Perazzio
- Departament of Rheumatology, Universidade Federal de São Paulo, São Paulo 04039-050, Brazil; (R.R.N.R.d.N.); (S.F.P.)
| | | |
Collapse
|
10
|
de Boer I, Harder AVE, Ferrari MD, van den Maagdenberg AMJM, Terwindt GM. Genetics of migraine: Delineation of contemporary understanding of the genetic underpinning of migraine. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:85-103. [PMID: 38043973 DOI: 10.1016/b978-0-12-823356-6.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Migraine is a disabling episodic brain disorder with an increased familial relative risk, an increased concordance in monozygotic twins, and an estimated heritability of approximately 50%. Various genetic approaches have been applied to identify genetic factors conferring migraine risk. Initially, candidate gene associations studies (CGAS) have been performed that test DNA variants in genes prioritized based on presumed a priori knowledge of migraine pathophysiology. More recently, genome-wide association studies (GWAS) are applied that test genetic variants, single-nucleotide polymorphisms (SNPs), in a hypothesis-free manner. To date, GWAS have identified ~40 genetic loci associated with migraine. New GWAS data, which are expected to come out soon, will reveal over 100 loci. Also, large-scale GWAS, which have appeared for many traits over the last decade, have enabled studying the overlap in genetic architecture between migraine and its comorbid disorders. Importantly, other genetic factors that cannot be identified by a GWAS approach also confer risk for migraine. First steps have been taken to determine the contribution of these mechanisms by investigating mitochondrial DNA and epigenetic mechanisms. In addition to typical epigenetic mechanisms, that is, DNA methylation and histone modifications, also RNA-based mechanisms regulating gene silencing and activation have recently gotten attention. Regardless, until now, most relevant genetic discoveries related to migraine still come from investigating monogenetic syndromes with migraine as a prominent part of the phenotype. Experimental studies on these syndromes have expanded our knowledge on the mechanisms underlying migraine pathophysiology. It can be envisaged that when all (epi)genetic and phenotypic data on the common and rare forms of migraine will be integrated, this will help to unravel the biological mechanisms for migraine, which will likely guide decision-making in clinical practice in the future.
Collapse
Affiliation(s)
- Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aster V E Harder
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
11
|
Al-Nofal M, de Boer I, Agirman S, Wilms AE, Zamanipoor Najafabadi AH, Terwindt GM, Notting IC. Optical coherence tomography angiography biomarkers of microvascular alterations in RVCL-S. Front Neurol 2022; 13:989536. [PMID: 36090874 PMCID: PMC9459015 DOI: 10.3389/fneur.2022.989536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Background The brain and retina share many neuronal and vasculature characteristics. We investigated the retinal microvasculature in patients with a monogenic vasculopathy using optical coherence tomography angiography (OCTA). OCT-A is a novel precise non-invasive imaging method that may provide biomarkers suitable for diagnosis and follow-up of small vessel diseases. Methods In this exploratory cross-sectional study, eleven RVCL-S patients and eleven age-matched healthy control participants were included. The size of the foveal avascular zone (FAZ) and the vascular density of the superficial capillary networks in the retina were measured by OCT-A. Results The symptomatic and presymptomatic patients showed significantly lower vascular density values than controls in the foveal region [median (IQR) 18.2% (15.8-18.6) vs. 24.4% (21.5-26.8) (p < 0.001), 29.8% (29.6-30.8) vs. 33.2% (32.0-33.6) (p = 0.002), respectively]. The FAZ was significantly larger in the symptomatic RVCL-S patients than in the control group [13,416 square pixels [7,529-22,860] vs. 1,405 square pixels [1,344-2,470] (p < 0.001)]. No significant difference was identified in measurements of FAZ comparing presymptomatic and controls. Conclusion Our findings with OCT-A demonstrated that RVCL-S causes an increase in the size of the FAZ in symptomatic RVCL-S patients compared to healthy participants. Moreover, there is a decrease in vessel density in the superficial capillary networks in both symptomatic and presymptomatic patients. In the future, newly developed precise objective instruments such as OCT (-A) may provide important tools in determining disease activity for follow up of common small vessel diseases.
Collapse
Affiliation(s)
- Mays Al-Nofal
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Seda Agirman
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Anne E. Wilms
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Irene C. Notting
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
12
|
Qu P, Cheng K, Gao Q, Li Y, Wang M. Application Value of Serum Hcy, TLR4, and CRP in the Diagnosis of Cerebral Small Vessel Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4025965. [PMID: 35502170 PMCID: PMC9056226 DOI: 10.1155/2022/4025965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 11/18/2022]
Abstract
Objective To evaluate the application value of combined detection of serum homocysteine (Hcy), Toll-like receptor 4 (TLR4), and C-reactive protein (CRP) in the diagnosis of cerebral small vessel disease (CSVD). Methods 90 patients with CSVD admitted to our hospital within the past year were identified as the research subjects, and the patients with cognitive dysfunction were assigned to the experimental group, and those with normal cognitive function were assigned to the control group according to the evaluation of cognitive dysfunction by the Montreal Cognitive Assessment (MoCA), with 45 cases in each group. Results The experimental group obtained remarkably elevated Hcy levels than the control group (P < 0.05). The patient's cognitive dysfunction is mainly attributed to the impact of serum Hcy. TLR4 and Hcy were negatively correlated with MoCA scores (P > 0.05). In comparison with the control group, the experimental group had significantly higher levels of Hcy, serum CRP, and interleukin (IL)-6 (P < 0.05). Conclusion The combined detection of serum Hcy, TLR4, and CRP features a high clinical value in the diagnosis of CSVD, which contributes to the prevention and treatment of cognitive dysfunction in patients.
Collapse
Affiliation(s)
- Peng Qu
- Department of Neurology, The Fifth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kaili Cheng
- Department of Neurology, The Fifth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Gao
- Department of Neurology, The Fifth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Li
- Department of Neurology, The Fifth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghua Wang
- Department of Neurology, The Fifth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
de Boer I, Steenmeijer SR, Pelzer N, Al-Nofal M, Dijkman G, Notting IC, Terwindt GM. Spectral Domain Optical Coherence Tomography in Retinal Vasculopathy With Cerebral Leukoencephalopathy and Systemic Manifestations: A Monogenic Small Vessel Disease. J Neuroophthalmol 2022; 42:e130-e136. [PMID: 34334759 DOI: 10.1097/wno.0000000000001336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is a monogenic small vessel disease caused by mutations in TREX1. Several organs, including retina and brain, are affected. Analyzing retinal anatomy is increasingly used as a biomarker for ophthalmological and neurological disorders (due to the shared embryological origin of retina and brain). Optical coherence tomography (OCT) provides a noninvasive cross-sectional visualization of optic disc and macula. We aimed to use OCT to investigate retinal layer thickness in RVCL-S. METHODS Cross-sectional, 17 TREX1 mutation carriers (34 eyes) and 9 controls (18 eyes) underwent comprehensive ophthalmologic assessment followed by spectral domain OCT for measuring peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular volume (TMV). Secondary outcomes included measuring thickness of individual macular retinal layers and peripapillary sectors. Findings were analyzed using generalized estimating equations to account for intereye correlation. RESULTS TREX1 mutation carriers had decreased pRNFL thickness (median [interquartile range] 76 [60-99] vs 99 [87-108] µm, P < 0.001) and TMV (8.1 [7.4-8.5] vs 8.7 [8.4-8.8] mm3, P = 0.006) compared with controls. With the exception of the temporal sector, the thickness of all peripapillary sectors was decreased in TREX1 mutation carriers. Ganglion cell layer (30 [22-37] vs 39 [36-41] µm, P < 0.001) and inner plexiform layer (27 [24-34] vs 34 [31-35], P = 0.001) were thinner in TREX1 mutation carriers. Notably, in 9 of 12 eyes with normal funduscopic examination, retinal thinning was already detected. CONCLUSIONS RVCL-S, which may serve as a vascular retinopathy model, is associated with retinal thinning in the peripapillary and macular area. OCT findings can potentially serve as early biomarkers for RVCL-S and other vascular retinopathies.
Collapse
Affiliation(s)
- Irene de Boer
- Departments of Neurology (IB, NP, GMT) and Ophthalmology (SRS, MA, GD, ICN), Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Migraine is a common, chronic, disorder that is typically characterized by recurrent disabling attacks of headache and accompanying symptoms, including aura. The aetiology is multifactorial with rare monogenic variants. Depression, epilepsy, stroke and myocardial infarction are comorbid diseases. Spreading depolarization probably causes aura and possibly also triggers trigeminal sensory activation, the underlying mechanism for the headache. Despite earlier beliefs, vasodilation is only a secondary phenomenon and vasoconstriction is not essential for antimigraine efficacy. Management includes analgesics or NSAIDs for mild attacks, and, for moderate or severe attacks, triptans or 5HT1B/1D receptor agonists. Because of cardiovascular safety concerns, unreliable efficacy and tolerability issues, use of ergots to abort attacks has nearly vanished in most countries. CGRP receptor antagonists (gepants) and lasmiditan, a selective 5HT1F receptor agonist, have emerged as effective acute treatments. Intramuscular onabotulinumtoxinA may be helpful in chronic migraine (migraine on ≥15 days per month) and monoclonal antibodies targeting CGRP or its receptor, as well as two gepants, have proven effective and well tolerated for the preventive treatment of migraine. Several neuromodulation modalities have been approved for acute and/or preventive migraine treatment. The emergence of new treatment targets and therapies illustrates the bright future for migraine management.
Collapse
|
15
|
Wilms A, de Boer I, Terwindt G. Retinal Vasculopathy with Cerebral Leukoencephalopathy and Systemic manifestations (RVCL-S): An update on basic science and clinical perspectives. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100046. [PMID: 36324396 PMCID: PMC9616387 DOI: 10.1016/j.cccb.2022.100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 04/29/2023]
Abstract
Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is a rare, underrecognized, systemic small vessel disease caused by heterozygous C-terminal truncating TREX1 mutations. The disease is characterized by vascular retinopathy, focal neurological complaints, cognitive decline and a wide range of systemic manifestations, including Raynaud's phenomenon, anemia and liver and kidney disease. Eventually, RVCL-S leads to premature death. The underlying pathological finding in RVCL-S is a nonatherosclerotic, amyloid-negative angiopathy involving small arteries and capillaries. However, the exact mechanisms by which the truncated TREX1 protein causes angiopathy remains unknown. Timely recognition of this disease is important to slow down and treat complications of the disorder, but also to prevent unnecessary (invasive) diagnostic or therapeutic procedures. As we move forward, translational research combining basic science advances and clinical findings as well as studies focusing on natural history following RVCL-S patients at different disease stages, will be critical to help elucidate RVCL-S pathophysiology. These studies will also provide the tools to identify appropriate biomarkers and therapeutic agent options for RVCL-S patients.
Collapse
|
16
|
Keith KA, Reed LK, Nguyen A, Qaiser R. Neurovascular Syndromes. Neurosurg Clin N Am 2021; 33:135-148. [PMID: 34801137 DOI: 10.1016/j.nec.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Patients with cerebrovascular syndromes are at risk for additional concerns associated with their syndrome. A wide variety of syndromes are associated with cerebrovascular diseases. Multidisciplinary care is helpful to ensure comprehensive evaluation and management. Precise diagnosis and appreciation for the underlying syndrome is critical for effective cerebrovascular and broader care. This text focuses on these conditions with a focus on underlying pathophysiology and associated genetics, presentation, diagnosis, and management of each disease.
Collapse
Affiliation(s)
- Kristin A Keith
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Laura K Reed
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Anthony Nguyen
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA
| | - Rabia Qaiser
- Baylor Scott & White Health/Texas A&M Neurosurgery Department, 2401 South 31st Street, MS-01-610A, Temple, TX 76508, USA.
| |
Collapse
|
17
|
Hoogeveen ES, Pelzer N, de Boer I, van Buchem MA, Terwindt GM, Kruit MC. Neuroimaging Findings in Retinal Vasculopathy with Cerebral Leukoencephalopathy and Systemic Manifestations. AJNR Am J Neuroradiol 2021; 42:1604-1609. [PMID: 34167956 DOI: 10.3174/ajnr.a7194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/12/2021] [Indexed: 11/07/2022]
Abstract
Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations is caused by TREX1 mutations. High-quality systematic follow-up neuroimaging findings have not been described in presymptomatic and symptomatic mutation carriers. We present MR imaging findings of 29 TREX1 mutation carriers (20-65 years of age) and follow-up of 17 mutation carriers (30-65 years of age). Mutation carriers younger than 40 years of age showed a notable number of punctate white matter lesions, but scan findings were generally unremarkable. From 40 years of age onward, supratentorial lesions developed with long-term contrast enhancement (median, 24 months) and diffusion restriction (median, 8 months). In these lesions, central susceptibility artifacts developed, at least partly corresponding to calcifications on available CT scans. Some lesions (n = 2) additionally showed surrounding edema and mass effect (pseudotumors). Cerebellar punctate enhancing lesions developed mainly in individuals older than 50 years of age. These typical neuroimaging findings should aid neuroradiologic recognition of retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations, which may enable early treatment of manifestations of the disease.
Collapse
Affiliation(s)
- E S Hoogeveen
- From the Departments of Radiology (E.S.H., M.A.v.B., M.C.K.)
| | - N Pelzer
- Neurology (N.P., I.d.B., G.M.T.), Leiden University Medical Center, Leiden, the Netherlands
| | - I de Boer
- Neurology (N.P., I.d.B., G.M.T.), Leiden University Medical Center, Leiden, the Netherlands
| | - M A van Buchem
- From the Departments of Radiology (E.S.H., M.A.v.B., M.C.K.)
| | - G M Terwindt
- Neurology (N.P., I.d.B., G.M.T.), Leiden University Medical Center, Leiden, the Netherlands
| | - M C Kruit
- From the Departments of Radiology (E.S.H., M.A.v.B., M.C.K.)
| |
Collapse
|
18
|
Abstract
Type I interferons (IFN-Is) are a very important group of cytokines that are produced by innate immune cells but also act on adaptive immune cells. IFN-Is possess antiviral, antitumor, and anti-proliferative effects, as well are associated with the initiation and maintenance of autoimmune disorders. Studies have shown that aberrantly expressed IFN-Is and/or type I IFN-inducible gene signatures in the serum or tissues of patients with autoimmune disorders are linked to their pathogenesis, clinical manifestations, and disease activity. Type I interferonopathies with mutations in genes impacting the type I IFN signaling pathway have shown symptoms and characteristics similar to those of systemic lupus erythematosus (SLE). Furthermore, both interventions in animal models and clinical trials of therapies targeting the type I IFN signaling pathway have shown efficacy in the treatment of autoimmune diseases. Our review aims to summarize the functions and targeted therapies (as well as clinical trials) of IFN-Is in both adult and pediatric autoimmune diseases, such as SLE, pediatric SLE (pSLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), Sjögren syndrome (SjS), and systemic sclerosis (SSc), discussing the potential abnormal regulation of transcription factors and epigenetic modifications and providing a potential mechanism for pathogenesis and therapeutic strategies for future clinical use.
Collapse
|
19
|
Zampatti S, Ragazzo M, Peconi C, Luciano S, Gambardella S, Caputo V, Strafella C, Cascella R, Caltagirone C, Giardina E. Genetic Counselling Improves the Molecular Characterisation of Dementing Disorders. J Pers Med 2021; 11:474. [PMID: 34073306 PMCID: PMC8227097 DOI: 10.3390/jpm11060474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Dementing disorders are a complex group of neurodegenerative diseases characterised by different, but often overlapping, pathological pathways. Genetics have been largely associated with the development or the risk to develop dementing diseases. Recent advances in molecular technologies permit analyzing of several genes in a small time, but the interpretation analysis is complicated by several factors: the clinical complexity of neurodegenerative disorders, the frequency of co-morbidities, and the high phenotypic heterogeneity of genetic diseases. Genetic counselling supports the diagnostic path, providing an accurate familial and phenotypic characterisation of patients. In this review, we summarise neurodegenerative dementing disorders and their genetic determinants. Genetic variants and associated phenotypes will be divided into high and low impact, in order to reflect the pathologic continuum between multifactorial and mendelian genetic factors. Moreover, we report a molecular characterisation of genes associated with neurodegenerative disorders with cognitive impairment. In particular, the high frequency of rare coding genetic variants in dementing genes strongly supports the role of geneticists in both, clinical phenotype characterisation and interpretation of genotypic data. The smart application of exome analysis to dementia patients, with a pre-analytical selection on familial, clinical, and instrumental features, improves the diagnostic yield of genetic test, reduces time for diagnosis, and allows a rapid and personalised management of disease.
Collapse
Affiliation(s)
- Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Michele Ragazzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Serena Luciano
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Stefano Gambardella
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| |
Collapse
|
20
|
Genetics, pathophysiology, diagnosis, treatment, management, and prevention of migraine. Biomed Pharmacother 2021; 139:111557. [PMID: 34243621 DOI: 10.1016/j.biopha.2021.111557] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
Migraine is a neurological ailment that is characterized by severe throbbing unilateral headache and associated with nausea, photophobia, phonophobia and vomiting. A full and clear mechanism of the pathogenesis of migraine, though studied extensively, has not been established yet. The current available information indicates an intracranial network activation that culminates in the sensitization of the trigemino-vascular system, release of inflammatory markers, and initiation of meningeal-like inflammatory reaction that is sensed as headache. Genetic factors might play a significant role in deciding an individual's susceptibility to migraine. Twin studies have revealed that a single gene polymorphism can lead to migraine in individuals with a monogenic migraine disorder. In this review, we describe recent advancements in the genetics, pathophysiology, diagnosis, treatment, management, and prevention of migraine. We also discuss the potential roles of genetic and abnormal factors, including some of the metabolic triggering factors that result in migraine attacks. This review will help to accumulate current knowledge about migraine and understanding of its pathophysiology, and provides up-to-date prevention strategies.
Collapse
|
21
|
Hoogeveen ES, Pelzer N, Ghariq E, van Osch MJ, Dahan A, Terwindt GM, Kruit MC. Cerebrovascular reactivity in retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. J Cereb Blood Flow Metab 2021; 41:831-840. [PMID: 33736510 PMCID: PMC7983338 DOI: 10.1177/0271678x20929430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Retinal Vasculopathy with Cerebral Leukoencephalopathy and Systemic manifestations (RVCL-S) is a small vessel disease caused by TREX1 mutations. RVCL-S is characterized by retinal vasculopathy and brain white matter lesions with and without contrast enhancement. We aimed to investigate cerebrovascular reactivity (CVR) in RVCL-S. In this cross-sectional observational study, 21 RVCL-S patients, 23 mutation-negative family members, and 31 healthy unrelated controls were included. CVR to a hypercapnic challenge was measured using dual-echo arterial spin labeling magnetic resonance imaging. Stratified analyses based on age were performed. We found that CVR was decreased in gray and white matter of RVCL-S patients compared with family members and healthy controls (ANCOVA; P < 0.05 for all comparisons). This was most noticeable in RVCL-S patients aged ≥40 years (ANCOVA, P < 0.05 for all comparisons). In RVCL-S patients aged < 40 years, only CVR in white matter was lower when compared to healthy controls (P < 0.05). Gray matter CVR was associated with white matter lesion volume in RVCL-S patients (r = -0.527, P = 0.01). In conclusion, impaired cerebrovascular reactivity may play an important role in the pathophysiology of RVCL-S and may be an useful early biomarker of cerebrovascular disease severity.
Collapse
Affiliation(s)
- Evelien S Hoogeveen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nadine Pelzer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eidrees Ghariq
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Jp van Osch
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark C Kruit
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Xie N, Sun Q, Yang J, Zhou Y, Xu H, Zhou L, Zhou Y. High clinical heterogeneity in a Chinese pedigree of retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S). Orphanet J Rare Dis 2021; 16:56. [PMID: 33516249 PMCID: PMC7847589 DOI: 10.1186/s13023-021-01712-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Being a newly defined disease, RVCL-S is underrecognized by clinicians globally. It is an autosomal dominantly inherited small vessel disease caused by the heterozygous C-terminal frameshift mutation in TREX1 gene. RVCL-S is featured by cerebral dysfunction, retinopathy, and vasculopathy in multiple internal organs. Misdiagnosis may cause devastating consequences in patients, such as iatrogenic PML caused by misuse of immunosuppressants. Thus, increasing awareness of this disease is in urgent need. Results We uncovered a large Chinese origin RVCL-S pedigree bearing the TREX1 mutation. A comprehensive characterization combining clinical, genetic, and neuropathological analysis was performed. The Intrafamilial comparison showed highly heterogeneous clinical phenotypes. Mutation carriers in our pedigree presented with retinopathy (8/13), seizures (2/13), increased intracranial pressure (1/13), mild cognitive impairment (3/13), stroke-like episode (3/13), mesenteric ischemia (1/13), nephropathy (9/13), ascites (3/13), hypertension (9/13), hyperlipidemia (3/8), hypoalbuminemia (3/8), normocytic anemia (3/8), subclinical hypothyroidism (1/8), hyperfibrinogenemia (1/8), hyperparathyroidism (2/8), and abnormal inflammatory markers (4/8). The constellation of symptoms is highly varied, making RVCL-S a challenging diagnosis. Comparison with reported RVCL-S pedigrees further revealed that the mesenteric ischemia is a novel clinical finding and the MRS pattern of brain lesions is emulating neoplasm and tumefactive demyelination. Conclusion Our reports characterize a highly heterogeneous RVCL-S pedigree, highlight the probability of misdiagnosis in clinical practice, and broaden the clinical spectrum of RVCL-S.
Collapse
Affiliation(s)
- Nina Xie
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, 410078, Hunan, China
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, 410078, Hunan, China
| | - Jinxia Yang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yangjie Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hongwei Xu
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, 410078, Hunan, China
| | - Lin Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, 410078, Hunan, China
| | - Yafang Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Changsha, 410078, Hunan, China.
| |
Collapse
|
23
|
Seraly MP, Badawi KH, Gupta SK, Jabbour NM, Ellis B, Leys M. A rare case of occlusive juxtafoveolar retinal telangiectasias associated with lesions of the central nervous system: A cerebroretinal vasculopathy like phenotype without mutations in the TREX1 gene. Am J Ophthalmol Case Rep 2020; 20:100985. [PMID: 33145458 PMCID: PMC7595880 DOI: 10.1016/j.ajoc.2020.100985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose To report a rare case of bilateral occlusive juxtafoveolar retinal telangiectasias associated with central nervous system lesions and renal impairment. Observations A 47-year-old woman presented to clinic with subjective vision loss in the right eye with best-corrected visual acuity (BCVA) 20/80. Fundoscopic examination, fluorescein angiography (FA), and optical coherence tomography with adjunct angiography (OCT/OCT-A) revealed macular microhemorrhages, enlarged foveal avascular zones (FAZ), and occlusive juxtafoveal telangiectasis with pruning of the macular capillaries in both eyes. Patient subsequently developed memory loss, dizziness, nystagmus, and diplopia secondary to intermittent exotropia. She was found to have a two-millimeter aneurysm of the proximal posterior cerebellar artery along with several scattered white matter changes on brain magnetic resonance imaging (MRI). Genetic workup revealed no mutations in the TREX1 gene. With continued surveillance over 18 months, the patient's BCVA deteriorated to 20/200 OU and she developed mild renal impairment, without further CNS complications. Conclusion and importance Patients who present with vision loss secondary to occlusive juxtafoveolar telangiectasias should undergo imaging of the central nervous system (CNS) for architectural abnormalities in cerebral vasculature and white matter. Further investigation of patients with the Gass-Blodi type 3 macular telangiectasia – cerebroretinal vasculopathy phenotype is required to optimize management protocols for both retinal and CNS lesions. At this time, no interventions have demonstrated clear benefit in vision preservation or recovery.
Collapse
Affiliation(s)
- Mark P. Seraly
- West Virginia University School of Medicine, 1 Medical Center Dr, Morgantown, WV, 26506, USA
| | - Karim H. Badawi
- West Virginia University School of Medicine, 1 Medical Center Dr, Morgantown, WV, 26506, USA
- Corresponding author. 533 Leah dr, Morgantown, WV, 26508, USA.
| | - Sumeet K. Gupta
- West Virginia University Eye Institute, 1 Medical Center Dr, Morgantown, WV, 26506, USA
| | - Nabil M. Jabbour
- West Virginia University Eye Institute, 1 Medical Center Dr, Morgantown, WV, 26506, USA
- Mid-Atlantic Retina Consultations, Inc., 3120 Collins Ferry Rd, Morgantown, WV, 26505-3305, USA
| | - Brian Ellis
- West Virginia University Eye Institute, 1 Medical Center Dr, Morgantown, WV, 26506, USA
| | - Monique Leys
- West Virginia University Eye Institute, 1 Medical Center Dr, Morgantown, WV, 26506, USA
| |
Collapse
|
24
|
Migraine and rare neurological disorders. Neurol Sci 2020; 41:439-446. [DOI: 10.1007/s10072-020-04645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Retinal vasculopathy with cerebral leukoencephalopathy due to TREX-1 mutation: An important mimicker of CNS inflammatory disease. Mult Scler Relat Disord 2020; 47:102639. [PMID: 33254089 DOI: 10.1016/j.msard.2020.102639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022]
|
26
|
Tran T, Ross L, Fuzzard D, Troutbeck R. TREX1-associated retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Clin Exp Ophthalmol 2020; 48:1307-1310. [PMID: 33068072 DOI: 10.1111/ceo.13872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Tuan Tran
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Medical Retina, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Medical Retina, Centre for Eye Research Australia, Melbourne, Victoria, Australia
| | - Laura Ross
- Department of Rheumatology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Dujon Fuzzard
- Department of Medical Retina, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Robyn Troutbeck
- Department of Medical Retina, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Medical Retina, Centre for Eye Research Australia, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Ford AL, Chin VW, Fellah S, Binkley MM, Bodin AM, Balasetti V, Taiwo Y, Kang P, Lin D, Jen JC, Grand MG, Bogacki M, Liszewski MK, Hourcade D, Chen Y, Hassenstab J, Lee JM, An H, Miner JJ, Atkinson JP. Lesion evolution and neurodegeneration in RVCL-S: A monogenic microvasculopathy. Neurology 2020; 95:e1918-e1931. [PMID: 32887784 PMCID: PMC7682842 DOI: 10.1212/wnl.0000000000010659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Objective To characterize lesion evolution and neurodegeneration in retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) using multimodal MRI. Methods We prospectively performed MRI and cognitive testing in RVCL-S and healthy control cohorts. Gray and white matter volume and disruption of white matter microstructure were quantified. Asymmetric spin echo acquisition permitted voxel-wise oxygen extraction fraction (OEF) calculation as an in vivo marker of microvascular ischemia. The RVCL-S cohort was included in a longitudinal analysis of lesion subtypes in which hyperintense lesions on fluid-attenuated inversion recovery (FLAIR), T1-postgadolinium, and diffusion-weighted imaging were delineated and quantified volumetrically. Results Twenty individuals with RVCL-S and 26 controls were enrolled. White matter volume and microstructure declined faster in those with RVCL–S compared to controls. White matter atrophy in RVCL-S was highly linear (ρ = −0.908, p < 0.0001). Normalized OEF was elevated in RVCL-S and increased with disease duration. Multiple cognitive domains, specifically those measuring working memory and processing speed, were impaired in RVCL-S. Lesion volumes, regardless of subtype, progressed/regressed with high variability as a function of age, while FLAIR lesion burden increased near time to death (p < 0.001). Conclusion RVCL-S is a monogenic microvasculopathy affecting predominantly the white matter with regard to atrophy and cognitive impairment. White matter volumes in RVCL-S declined linearly, providing a potential metric against which to test the efficacy of future therapies. Progressive elevation of white matter OEF suggests that microvascular ischemia may underlie neurodegeneration in RVCL-S.
Collapse
Affiliation(s)
- Andria L Ford
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Victoria W Chin
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Slim Fellah
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael M Binkley
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Allie M Bodin
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vamshi Balasetti
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yewande Taiwo
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter Kang
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Doris Lin
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joanna C Jen
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - M Gilbert Grand
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Madonna Bogacki
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - M Kathryn Liszewski
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dennis Hourcade
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yasheng Chen
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jason Hassenstab
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jin-Moo Lee
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hongyu An
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jonathan J Miner
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - John P Atkinson
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
28
|
|
29
|
Simpson SR, Hemphill WO, Hudson T, Perrino FW. TREX1 - Apex predator of cytosolic DNA metabolism. DNA Repair (Amst) 2020; 94:102894. [PMID: 32615442 DOI: 10.1016/j.dnarep.2020.102894] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The cytosolic Three prime Repair EXonuclease 1 (TREX1) is a powerful DNA-degrading enzyme required for clearing cytosolic DNA to prevent aberrant inflammation and autoimmunity. In the absence of TREX1 activity, cytosolic DNA pattern recognition receptors of the innate immune system are constitutively activated by undegraded TREX1 substrates. This triggers a chronic inflammatory response in humans expressing mutant TREX1 alleles, eliciting a spectrum of rare autoimmune diseases dependent on the nature of the mutation. The precise origins of cytosolic DNA targeted by TREX1 continue to emerge, but DNA emerging from the nucleus or taken up by the cell could represent potential sources. In this Review, we explore the biochemical and immunological data supporting the role of TREX1 in suppressing cytosolic DNA sensing, and discuss the possibility that TREX1 may contribute to maintenance of genome integrity.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Teesha Hudson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
30
|
de Boer I, Terwindt GM, van den Maagdenberg AMJM. Genetics of migraine aura: an update. J Headache Pain 2020; 21:64. [PMID: 32503413 PMCID: PMC7275514 DOI: 10.1186/s10194-020-01125-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Migraine is a common brain disorder with a large genetic component. Of the two main migraine types, migraine with aura and migraine without aura, the genetic underpinning in the former is least understood. Given the evidence from epidemiological studies in cohorts and families that the genetic contribution is highest in migraine with aura, this seems paradoxical. Various genetic approaches have been applied to identify genetic factors that confer risk for migraine. Initially, so-called candidate gene associations studies (CGAS) have been performed that test DNA variants in genes prioritized based on presumed a priori knowledge of migraine pathophysiology. More recently, genome-wide association studies (GWAS) tested variants in any gene in an hypothesis-free manner. Whereas GWAS in migraine without aura, or the more general diagnosis migraine have already identified dozens of gene variants, the specific hunt for gene variants in migraine with aura has been disappointing. The only GWAS specifically investigating migraine with aura yielded only one single associated single nucleotide polymorphism (SNP), near MTDH and PGCP, with genome-wide significance. However, interrogation of all genotyped SNPs, so beyond this one significant hit, was more successful and led to the notion that migraine with aura and migraine without aura are genetically more alike than different. Until now, most relevant genetic discoveries related to migraine with aura came from investigating monogenetic syndromes with migraine aura as a prominent phenotype (i.e. FHM, CADASIL and FASPS). This review will highlight the genetic findings relevant to migraine with aura.
Collapse
Affiliation(s)
- Irene de Boer
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands. .,Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|